A205573 Array M read by antidiagonals in which successive rows evidently converge to A001405 (central binomial coefficients).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 5, 1, 1, 1, 2, 3, 6, 8, 1, 1, 1, 2, 3, 6, 10, 13, 1, 1, 1, 2, 3, 6, 10, 19, 21, 1, 1, 1, 2, 3, 6, 10, 20, 33, 34, 1, 1, 1, 2, 3, 6, 10, 20, 35, 61, 55, 1, 1, 1, 2, 3, 6, 10, 20, 35, 69, 108, 89, 1
Offset: 0
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,... 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... 1, 1, 2, 3, 6, 10, 19, 33, 61, 108, 197,... 1, 1, 2, 3, 6, 10, 20, 35, 69, 124, 241,... 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 251,... 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252,... ... According to Conjecture 2, row n = 3 has g.f. F_3(x) = (1-2*x^2)/(1-x-3*x^2+2*x^3+x^4).
Links
- L. E. Jeffery, Unit-primitive matrices
Formula
Let N=2*n+3. For each n>0, define the (n+1) X (n+1) tridiagonal unit-primitive matrix (see [Jeffery]) B_n = A_{N,1} = [0,1,0,...,0; 1,0,1,0,...,0; 0,1,0,1,0,...,0; ...; 0,...,0,1,0,1; 0,...,0,1,1], and put B_0 = [1]. Then, for all n, M(n,k)=[(B_n)^k]{n+1,n+1}, k=0,1,..., where X{n+1,n+1} denotes the lower right corner entry of X.
CONJECTURE 2 (Rows of M). Let S(n,i) denote term i in row n of A115139, i=0,...,floor(n/2), and let T(n,j) denote term j in row n of A108299, j=0,...,n. The generating function for row n of M is of the form F_n(x) =sum[i=0,...,floor(n/2) S(n,i)*x^(2*i)]/sum[j=0,...,n T(n,j)*x^j].
CONJECTURE 3 (Columns of M). Let D(m,k) denote term m in column k of A191314, m=0,...,floor(k/2). The generating function for column k of M is of the form G_k(x)=sum[m=0,...,floor(k/2) D(m,k)*x^m]/(1-x).
Comments