cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A090171 Triangle read by rows, related to Pascal's triangle read mod 2, starting with 0, 1, 0.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2004

Keywords

Examples

			Triangle begins:
0
1 0
1 1 0
0 1 0 0
1 1 1 1 0
...
		

Crossrefs

Cf. A090172, A090173, A090174, A091533, A091562, A205575 (same recurrence).
a(n, k) = A090174(n-1, k), k

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) + T(n-2, k-1) + T(n-2, k-2) for n >= 2, k >= 0, with initial conditions specified by first two rows.

Extensions

Edited and extended by Christian G. Bower, Jan 20 2004

A091562 Triangle read by rows, related to Pascal's triangle, starting with 1, 0, 0.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 5, 7, 5, 2, 3, 10, 17, 17, 10, 3, 5, 20, 41, 51, 41, 20, 5, 8, 38, 91, 136, 136, 91, 38, 8, 13, 71, 195, 339, 405, 339, 195, 71, 13, 21, 130, 403, 799, 1107, 1107, 799, 403, 130, 21, 34, 235, 812, 1807, 2845, 3297, 2845, 1807, 812, 235, 34
Offset: 0

Author

Christian G. Bower, Jan 20 2004

Keywords

Examples

			Triangle begins:
  1;
  0,0;
  1,1,1;
  1,2,2,1;
  2,5,7,5,2;
  ...
		

Crossrefs

Row sums: A054878, column 0: A000045(n-1), column 1: A001629.
Cf. A090171, A090172, A090173, A090174, A091533, A205575 (same recurrence).
Cf. A090172.

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) + T(n-2, k-1) + T(n-2, k-2) for n >= 2, k >= 0, with initial conditions specified by first two rows.
G.f.: A(x, y) = (1-x-x*y)/(1-x-x*y-x^2-x^2*y-x^2*y^2).

A090173 Triangle read by rows, related to Pascal's triangle read mod 2, starting with 0, 0, 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1
Offset: 0

Author

N. J. A. Sloane, Jan 19 2004

Keywords

Examples

			Triangle begins
  0;
  0,1;
  0,1,1;
  0,0,1,0;
  0,1,1,1,1;
  ...
		

Crossrefs

Cf. A090171, A090172, A090174, A091533, A091562, A205575 (same recurrence).
a(n, k) = A090174(n-1, k-1), k>0, 0 otherwise.

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) + T(n-2, k-1) + T(n-2, k-2) for n >= 2, k >= 0, with initial conditions specified by first two rows.

Extensions

Edited and extended by Christian G. Bower, Jan 20 2004

A228815 Symmetric triangle, read by rows, related to Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 10, 14, 10, 3, 5, 20, 36, 36, 20, 5, 8, 38, 83, 106, 83, 38, 8, 13, 71, 182, 281, 281, 182, 71, 13, 21, 130, 382, 690, 834, 690, 382, 130, 21, 34, 235, 778, 1606, 2268, 2268, 1606, 778, 235, 34, 55, 420, 1546, 3586, 5780, 6750
Offset: 0

Author

Philippe Deléham, Oct 30 2013

Keywords

Comments

Triangles satisfying the same recurrence: A091533, A091562, A185081, A205575, A209137, A209138.

Examples

			Triangle begins :
0
1, 1
1, 2, 1
2, 5, 5, 2
3, 10, 14, 10, 3
5, 20, 36, 36, 20, 5
8, 38, 83, 106, 83, 38, 8
13, 71, 182, 281, 281, 182, 71, 13
21, 130, 382, 690, 834, 690, 382, 130, 21
34, 235, 778, 1606, 2268, 2268, 1606, 778, 235, 34
55, 420, 1546, 3586, 5780, 6750, 5780, 3586, 1546, 420, 55
		

Crossrefs

Cf. A000045 (1st column), A001629 (2nd column), A008998, A152011, A261055 (3rd column).

Formula

G.f.: x*(1+y)/(1-x-x*y-x^2-x^2*y-x^2*y^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = 0, T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
Sum_{k = 0..n} T(n,k)*x^k = A000045(n), 2*A015518(n), 3*A015524(n), 4*A200069(n) for x = 0, 1, 2, 3 respectively.
Sum_{k = 0..floor(n/2)} T(n-k,k) = A008998(n+1).
Showing 1-4 of 4 results.