A205584 Number of (n+1) X 3 0..2 arrays with no 2 X 2 subblock having the same number of equal edges as its horizontal or vertical neighbors, and new values 0..2 introduced in row major order.
74, 550, 4220, 32500, 248940, 1910922, 14668206, 112560786, 863863526, 6629842280, 50880821560, 390488098388, 2996825524800, 22999305690670, 176509524902826, 1354632729727342, 10396208030732474, 79786307537199012
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0....0..0..1....0..0..0....0..0..0....0..0..0....0..1..2....0..0..1 ..1..0..0....0..2..2....0..1..2....0..0..1....1..0..0....0..2..0....2..0..2 ..2..0..2....2..0..2....2..1..2....1..2..0....1..2..0....2..2..1....2..1..0 ..2..0..1....2..0..1....1..0..2....1..2..1....2..1..0....0..1..2....2..2..2 ..0..1..1....1..0..0....1..1..0....0..0..2....0..1..1....0..1..0....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A205590.
Formula
Empirical: a(n) = 3*a(n-1) +24*a(n-2) +82*a(n-3) +83*a(n-4) -107*a(n-5) +30*a(n-6) +250*a(n-7).
Empirical g.f.: 2*x*(37 + 164*x + 397*x^2 + 286*x^3 - 541*x^4 + 165*x^5 + 1125*x^6) / (1 - 3*x - 24*x^2 - 82*x^3 - 83*x^4 + 107*x^5 - 30*x^6 - 250*x^7). - Colin Barker, Jun 12 2018
Comments