This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205705 #8 Mar 30 2012 18:58:11 %S A205705 5,6,8,8,9,10,10,11,11,12,12,12,13,14,14,14,15,15,15,16,16,16,16,17, %T A205705 17,17,17,18,18,18,18,18,19,19,19,19,19,20,20,20,20,21,21,22,22,22,22, %U A205705 22,23,23,23,23,23,23,24,24,24,25,25,25,25,26,26,26,26,26,26 %N A205705 Numbers k for which 8 divides prime(k)-prime(j) for some j<k; each k occurs once for each such j. %C A205705 For a guide to related sequences, see A205558. %e A205705 The first six terms match these differences: %e A205705 p(5)-p(2)=11-3=8=8*1 %e A205705 p(6)-p(3)=13-5=8=8*1 %e A205705 p(8)-p(2)=19-3=16=8*2 %e A205705 p(8)-p(5)=19-11=8=8*1 %e A205705 p(9)-p(4)=23-7=16=8*2 %e A205705 p(10)-p(3)=29-5=24=8*3 %t A205705 s[n_] := s[n] = Prime[n]; z1 = 900; z2 = 70; %t A205705 f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; %t A205705 Table[s[n], {n, 1, 30}] (* A000040 *) %t A205705 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205705 Table[u[m], {m, 1, z1}] (* A204890 *) %t A205705 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205705 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205705 d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] %t A205705 c = 8; t = d[c] (* A205704 *) %t A205705 k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] %t A205705 j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 %t A205705 Table[k[n], {n, 1, z2}] (* A205705 *) %t A205705 Table[j[n], {n, 1, z2}] (* A205706 *) %t A205705 Table[s[k[n]], {n, 1, z2}] (* A205707 *) %t A205705 Table[s[j[n]], {n, 1, z2}] (* A205708 *) %t A205705 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205709 *) %t A205705 Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205710 *) %Y A205705 Cf. A205558, A204892, A204890, A205706, A205710. %K A205705 nonn %O A205705 1,1 %A A205705 _Clark Kimberling_, Jan 31 2012