This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205712 #12 Oct 25 2024 04:52:06 %S A205712 5,9,10,10,11,12,13,13,14,15,15,15,16,17,17,17,18,18,19,19,20,20,21, %T A205712 21,22,22,22,23,23,23,23,24,24,24,25,25,25,25,26,26,26,26,26,27,27,27, %U A205712 28,28,28,28,29,29,29,30,30,30,30,31,31,31,31,32,32,32,32,32,33 %N A205712 Numbers k for which 9 divides prime(k)-prime(j) for some j<k; each k occurs once for each such j. %C A205712 For a guide to related sequences, see A205558. %e A205712 The first six terms match these differences: %e A205712 p(5)-p(1)=11-2=9=9*1 %e A205712 p(9)-p(3)=23-5=18=9*2 %e A205712 p(10)-p(1)=29-2=27=9*3 %e A205712 p(10)-p(5)=29-11=18=9*2 %e A205712 p(11)-p(6)=31-13=18=9*2 %e A205712 p(12)-p(8)=37-19=18=9*2 %t A205712 s[n_] := s[n] = Prime[n]; z1 = 900; z2 = 70; %t A205712 f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; %t A205712 Table[s[n], {n, 1, 30}] (* A000040 *) %t A205712 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205712 Table[u[m], {m, 1, z1}] (* A204890 *) %t A205712 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205712 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205712 d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] %t A205712 c = 9; t = d[c] (* A205711 *) %t A205712 k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] %t A205712 j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 %t A205712 Table[k[n], {n, 1, z2}] (* A205712 *) %t A205712 Table[j[n], {n, 1, z2}] (* A205713 *) %t A205712 Table[s[k[n]], {n, 1, z2}] (* A205714 *) %t A205712 Table[s[j[n]], {n, 1, z2}] (* A205715 *) %t A205712 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205716 *) %t A205712 Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205717 *) %Y A205712 Cf. A205558, A204892, A204890, A205713, A205717. %K A205712 nonn %O A205712 1,1 %A A205712 _Clark Kimberling_, Jan 31 2012