This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205745 #34 Jun 02 2025 07:39:44 %S A205745 0,1,1,0,1,1,1,0,1,1,1,0,1,1,2,0,1,1,1,0,2,1,1,0,1,1,1,0,1,1,1,0,2,1, %T A205745 2,0,1,1,2,0,1,1,1,0,2,1,1,0,1,1,2,0,1,1,2,0,2,1,1,0,1,1,2,0,2,1,1,0, %U A205745 2,1,1,0,1,1,2,0,2,1,1,0,1,1,1,0,2,1,2 %N A205745 a(n) = card { d | d*p = n, d odd, p prime }. %C A205745 Equivalently, a(n) is the number of prime divisors p|n such that n/p is odd. - _Gus Wiseman_, Jun 06 2018 %H A205745 Charles R Greathouse IV, <a href="/A205745/b205745.txt">Table of n, a(n) for n = 1..10000</a> %F A205745 O.g.f.: Sum_{p prime} x^p/(1 - x^(2p)). - _Gus Wiseman_, Jun 06 2018 %F A205745 Sum_{k=1..n} a(k) = (n/2) * (log(log(n)) + B) + O(n/log(n)), where B is Mertens's constant (A077761). - _Amiram Eldar_, Sep 21 2024 %t A205745 a[n_] := Sum[ Boole[ OddQ[d] && PrimeQ[n/d] ], {d, Divisors[n]} ]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jun 27 2013 *) %o A205745 (Sage) %o A205745 def A205745(n): %o A205745 return sum((n//d) % 2 for d in divisors(n) if is_prime(d)) %o A205745 [A205745(n) for n in (1..105)] %o A205745 (PARI) a(n)=if(n%2,omega(n),n%4/2) \\ _Charles R Greathouse IV_, Jan 30 2012 %o A205745 (Haskell) %o A205745 a205745 n = sum $ map ((`mod` 2) . (n `div`)) %o A205745 [p | p <- takeWhile (<= n) a000040_list, n `mod` p == 0] %o A205745 -- _Reinhard Zumkeller_, Jan 31 2012 %Y A205745 Cf. A000005, A000607, A001221, A008683, A010051, A068050, A077761, A083399, A088705, A106404, A305614. %K A205745 nonn %O A205745 1,15 %A A205745 _Peter Luschny_, Jan 30 2012