A205780 Least positive integer k such that n divides C(k)-C(j) for some j in [1,k-1], where C=A007598 (squared Fibonacci numbers).
2, 3, 2, 3, 3, 4, 4, 3, 5, 5, 5, 4, 5, 6, 5, 4, 7, 6, 7, 5, 4, 7, 7, 4, 9, 7, 7, 6, 7, 5, 8, 6, 6, 7, 6, 6, 8, 9, 5, 6, 10, 6, 10, 7, 10, 10, 8, 6, 11, 9, 9, 7, 9, 7, 5, 6, 9, 9, 12, 5, 13, 13, 5, 8, 8, 10, 19, 7, 12, 13, 11, 6, 11, 19, 9, 9, 8, 8, 23, 6, 10, 12, 22, 6, 10, 10, 8, 7, 9
Offset: 1
Keywords
Examples
1 divides C(2)-C(1) -> k=2, j=1 2 divides C(3)-C(1) -> k=3, j=1 3 divides C(2)-C(1) -> k=2, j=1 4 divides C(3)-C(1) -> k=3, j=1 5 divides C(3)-C(2) -> k=3, j=2
Programs
-
Mathematica
s = Table[(Fibonacci[n + 1])^2, {n, 1, 120}]; lk = Table[ NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}] Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}] (* Peter J. C. Moses, Jan 27 2012 *)
Comments