This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205783 #23 Aug 02 2015 17:51:58 %S A205783 1,4,6,8,9,10,12,14,15,16,18,20,21,22,24,26,27,28,30,32,33,34,35,36, %T A205783 38,39,40,42,44,45,46,48,49,50,51,52,54,56,57,58,60,62,63,64,65,66,68, %U A205783 70,72,74,75,76,78,80,82,84,85,86,88,90,92,93,94,95,96,98,99,100 %N A205783 Complement of A206074, a coding of reducible polynomials over Q (with coefficients 0 or 1). %C A205783 Reducibility here refers to the field of rational numbers. %C A205783 Except for its initial 3, is A039004 a subsequence of A205783? %H A205783 Antti Karttunen, <a href="/A205783/b205783.txt">Table of n, a(n) for n = 1..21951</a> %F A205783 Other identities and observations. For all n >= 1: %F A205783 A255573(a(n)) = n. %e A205783 The reducible polynomials matching the first four terms: %e A205783 1 = 1(base 2) matches 1 %e A205783 4 = 100(base 2) matches x^2 %e A205783 6 = 110(base 2) matches x^2 + x %e A205783 8 = 1000(base 2) matches x^3 %e A205783 9 = 1001(base 2) matches x^3 + 1 %t A205783 t = Table[IntegerDigits[n, 2], {n, 1, 850}]; %t A205783 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A205783 p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] %t A205783 Table[p[n, x], {n, 1, 15}] %t A205783 u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]], %t A205783 AppendTo[u, n]], {n, 300}]; %t A205783 u (* A206074 *) %t A205783 Complement[Range[200], u] (* A205783 *) %t A205783 b[n_] := FromDigits[IntegerDigits[u, 2][[n]]] %t A205783 Table[b[n], {n, 1, 40}] (* A206073 *) %o A205783 (PARI) %o A205783 isA205783(n) = ((n > 0) && !polisirreducible(Pol(binary(n)))); %o A205783 n = 0; i = 0; while(n < 32768, n++; if(isA205783(n), i++; write("b205783.txt", i, " ", n))); %o A205783 \\ _Antti Karttunen_, Jul 28 2015 after _Joerg Arndt_'s code for A206074. %Y A205783 Cf. A206074 (complement), A255573 (left inverse). %Y A205783 After 1 a subsequence of A091212 (69 is the first term missing from here). %Y A205783 Cf. also permutations A260421 - A260426. %K A205783 nonn %O A205783 1,2 %A A205783 _Clark Kimberling_, Feb 03 2012