This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205792 #7 Feb 28 2014 09:16:25 %S A205792 1,1,1,2,1,1,1,2,3,1,1,2,1,1,1,2,1,3,1,2,1,1,1,2,1,1,3,2,1,1,1,2,1,1, %T A205792 1,6,1,1,1,2,3,1,1,1,3,1,1,2,7,1,1,2,1,3,2,2,1,1,1,2,2,2,3,2,1,2,1,2, %U A205792 1,1,3,6,1,1,1,2,5,1,1,2,3,3,1,2,1,1,1,2,1,3,1,2,1,1,1,2,1,7,3 %N A205792 Least positive integer j such that n divides k^5-j^5, where k, as in A205791, is the least number for which there is such a j. %C A205792 For a guide to related sequences, see A204892. %e A205792 1 divides 2^5-1^5 -> k=2, j=1 %e A205792 2 divides 3^5-1^5 -> k=3, j=1 %e A205792 3 divides 4^5-1^5 -> k=4, j=1 %e A205792 4 divides 4^5-2^5 -> k=4, j=2 %e A205792 5 divides 6^5-1^5 -> k=6, j=1 %e A205792 6 divides 7^5-1^5 -> k=7, j=1 %t A205792 s = Table[n^4, {n, 1, 120}] ; %t A205792 lk = Table[ %t A205792 NestWhile[# + 1 &, 1, %t A205792 Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, %t A205792 Length[s]}] %t A205792 Table[NestWhile[# + 1 &, 1, %t A205792 Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}] %t A205792 (* _Peter J. C. Moses_, Jan 27 2012 *) %Y A205792 Cf. A204892. %K A205792 nonn %O A205792 1,4 %A A205792 _Clark Kimberling_, Feb 01 2012