A205817 Number of (n+1) X 3 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.
66, 216, 714, 2430, 8274, 28242, 96402, 329130, 1123698, 3836538, 13098738, 44721882, 152690034, 521316378, 1779885426, 6076908954, 20747864946, 70837641882, 241854837618, 825744066714, 2819266591602, 9625578232986
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2..0..0....1..2..2....2..0..0....1..1..1....2..1..2....1..0..1....0..0..2 ..2..1..2....0..0..1....2..1..2....2..0..2....0..1..0....2..0..2....2..1..1 ..2..0..2....1..2..1....2..0..2....2..1..1....2..1..2....1..0..1....2..0..2 ..2..1..1....0..0..0....1..0..1....2..0..2....0..1..0....1..2..1....1..0..1 ..2..0..2....2..1..2....1..2..1....1..1..2....0..2..2....0..2..0....1..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A205823.
Formula
Empirical: a(n) = 4*a(n-1) - a(n-2) - 4*a(n-3) + 2*a(n-4).
Empirical g.f.: 6*x*(11 - 8*x - 14*x^2 + 9*x^3) / ((1 - x)*(1 + x)*(1 - 4*x + 2*x^2)). - Colin Barker, Jun 12 2018
Comments