A205819 Number of (n+1) X 5 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.
492, 2430, 12318, 67944, 380568, 2158482, 12281976, 70022628, 399463842, 2279603796, 13010464716, 74259457206, 423858388308, 2419327070832, 13809259294038, 78821939400948, 449908555238976, 2568038752491042
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..2..1..2....2..2..0..1..0....1..2..0..2..0....2..1..0..0..2 ..2..1..0..1..0....0..1..0..2..0....0..2..1..1..0....0..1..2..1..1 ..0..1..2..1..2....0..2..0..1..0....1..2..0..2..2....2..1..0..0..2 ..2..1..0..0..0....1..1..0..2..0....0..2..1..1..0....0..1..2..1..1 ..0..1..2..1..2....0..2..0..1..0....1..2..0..2..2....2..1..0..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 10*a(n-1) -18*a(n-2) -83*a(n-3) +264*a(n-4) +171*a(n-5) -1140*a(n-6) +234*a(n-7) +2180*a(n-8) -1280*a(n-9) -1912*a(n-10) +1667*a(n-11) +624*a(n-12) -873*a(n-13) +32*a(n-14) +162*a(n-15) -31*a(n-16) -8*a(n-17) +2*a(n-18).
Comments