cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A205817 Number of (n+1) X 3 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.

Original entry on oeis.org

66, 216, 714, 2430, 8274, 28242, 96402, 329130, 1123698, 3836538, 13098738, 44721882, 152690034, 521316378, 1779885426, 6076908954, 20747864946, 70837641882, 241854837618, 825744066714, 2819266591602, 9625578232986
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2012

Keywords

Comments

Column 2 of A205823.

Examples

			Some solutions for n=4:
..2..0..0....1..2..2....2..0..0....1..1..1....2..1..2....1..0..1....0..0..2
..2..1..2....0..0..1....2..1..2....2..0..2....0..1..0....2..0..2....2..1..1
..2..0..2....1..2..1....2..0..2....2..1..1....2..1..2....1..0..1....2..0..2
..2..1..1....0..0..0....1..0..1....2..0..2....0..1..0....1..2..1....1..0..1
..2..0..2....2..1..2....1..2..1....1..1..2....0..2..2....0..2..0....1..2..1
		

Crossrefs

Cf. A205823.

Formula

Empirical: a(n) = 4*a(n-1) - a(n-2) - 4*a(n-3) + 2*a(n-4).
Empirical g.f.: 6*x*(11 - 8*x - 14*x^2 + 9*x^3) / ((1 - x)*(1 + x)*(1 - 4*x + 2*x^2)). - Colin Barker, Jun 12 2018

A205818 Number of (n+1) X 4 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.

Original entry on oeis.org

180, 714, 2880, 12318, 53100, 230532, 1002240, 4361064, 18980472, 82617132, 359622708, 1565418528, 6814215036, 29662110636, 129118523304, 562050276348, 2446593518052, 10649972628456, 46359118343628, 201800318106108
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2012

Keywords

Comments

Column 3 of A205823.

Examples

			Some solutions for n=4:
..1..0..0..2....0..0..2..2....2..2..2..0....1..1..1..0....1..2..1..1
..1..2..1..2....2..1..1..0....1..0..1..0....2..0..2..2....1..0..0..2
..1..0..1..0....2..0..2..2....1..2..1..2....2..1..1..0....2..2..1..1
..2..0..2..2....1..1..1..0....0..2..0..2....2..0..2..2....1..0..0..2
..2..1..1..0....2..0..2..0....0..1..1..1....2..1..1..0....1..2..1..2
		

Crossrefs

Cf. A205823.

Formula

Empirical: a(n) = 3*a(n-1) + 10*a(n-2) - 13*a(n-3) - 25*a(n-4) + 12*a(n-5) + 18*a(n-6) - 2*a(n-8).
Empirical g.f.: 6*x*(30 + 29*x - 177*x^2 - 187*x^3 + 188*x^4 + 197*x^5 - 5*x^6 - 23*x^7) / ((1 - x - x^2)*(1 - 2*x - 11*x^2 + 14*x^4 + 2*x^5 - 2*x^6)). - Colin Barker, Jun 12 2018

A205819 Number of (n+1) X 5 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.

Original entry on oeis.org

492, 2430, 12318, 67944, 380568, 2158482, 12281976, 70022628, 399463842, 2279603796, 13010464716, 74259457206, 423858388308, 2419327070832, 13809259294038, 78821939400948, 449908555238976, 2568038752491042
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2012

Keywords

Comments

Column 4 of A205823.

Examples

			Some solutions for n=4:
..0..1..2..1..2....2..2..0..1..0....1..2..0..2..0....2..1..0..0..2
..2..1..0..1..0....0..1..0..2..0....0..2..1..1..0....0..1..2..1..1
..0..1..2..1..2....0..2..0..1..0....1..2..0..2..2....2..1..0..0..2
..2..1..0..0..0....1..1..0..2..0....0..2..1..1..0....0..1..2..1..1
..0..1..2..1..2....0..2..0..1..0....1..2..0..2..2....2..1..0..0..2
		

Formula

Empirical: a(n) = 10*a(n-1) -18*a(n-2) -83*a(n-3) +264*a(n-4) +171*a(n-5) -1140*a(n-6) +234*a(n-7) +2180*a(n-8) -1280*a(n-9) -1912*a(n-10) +1667*a(n-11) +624*a(n-12) -873*a(n-13) +32*a(n-14) +162*a(n-15) -31*a(n-16) -8*a(n-17) +2*a(n-18).

A205820 Number of (n+1) X 6 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.

Original entry on oeis.org

1344, 8274, 53100, 380568, 2791080, 20842578, 156410676, 1177361316, 8870853996, 66873761742, 504225673728, 3802217597802, 28672407717948, 216221748724626, 1630562796353904, 12296378355562308, 92729406038121768, 699291160811405796
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2012

Keywords

Comments

Column 5 of A205823.

Examples

			Some solutions for n=4:
..1..0..1..0..0..2....0..2..1..2..2..2....0..0..0..0..1..0....2..1..1..0..1..0
..2..0..2..2..1..1....1..2..0..0..1..0....1..2..1..2..1..2....2..0..2..0..2..0
..1..1..1..0..0..2....0..2..1..2..1..2....0..2..0..2..0..2....1..0..1..0..1..0
..2..0..2..2..1..1....1..2..0..2..0..2....1..1..0..1..0..1....2..0..2..2..2..2
..1..0..1..0..0..2....0..2..1..1..0..1....0..2..2..1..2..1....1..0..1..0..1..0
		

Formula

Empirical: a(n) = 7*a(n-1) +53*a(n-2) -357*a(n-3) -1079*a(n-4) +7394*a(n-5) +11581*a(n-6) -84118*a(n-7) -73551*a(n-8) +594925*a(n-9) +284936*a(n-10) -2793237*a(n-11) -633322*a(n-12) +9049520*a(n-13) +497598*a(n-14) -20718745*a(n-15) +1367131*a(n-16) +34016824*a(n-17) -5176803*a(n-18) -40382375*a(n-19) +8617455*a(n-20) +34762108*a(n-21) -8910046*a(n-22) -21645081*a(n-23) +6188645*a(n-24) +9664248*a(n-25) -2958595*a(n-26) -3042270*a(n-27) +974466*a(n-28) +655984*a(n-29) -217442*a(n-30) -92260*a(n-31) +31633*a(n-32) +7754*a(n-33) -2784*a(n-34) -325*a(n-35) +127*a(n-36) +4*a(n-37) -2*a(n-38).

A205821 Number of (n+1) X 7 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.

Original entry on oeis.org

3672, 28242, 230532, 2158482, 20842578, 206195280, 2053746000, 20547395916, 205854316380, 2064129121566, 20703020123544, 207684698582640, 2083530777092724, 20903078814105732, 209713177538231946
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2012

Keywords

Comments

Column 6 of A205823.

Examples

			Some solutions for n=4:
..1..2..0..2..0..2..0....1..2..1..2..2..2..2....0..1..0..1..2..1..2
..0..2..1..1..0..1..0....0..2..0..0..1..0..1....2..2..2..1..0..1..0
..1..2..0..2..2..2..2....0..1..1..2..2..0..2....0..1..0..1..2..1..2
..0..2..1..1..0..1..0....2..2..0..0..1..1..1....0..2..2..1..0..0..2
..1..2..0..2..2..1..2....0..1..1..2..2..0..2....0..1..0..1..2..1..1
		

Formula

Empirical: a(n) = 28*a(n-1) -208*a(n-2) -1082*a(n-3) +21398*a(n-4) -42129*a(n-5) -748651*a(n-6) +3831277*a(n-7) +11009650*a(n-8) -118512698*a(n-9) +20241007*a(n-10) +2074711521*a(n-11) -3798983183*a(n-12) -22498840839*a(n-13) +77155306771*a(n-14) +141735165873*a(n-15) -904628575785*a(n-16) -216309475153*a(n-17) +7176695446816*a(n-18) -5381140620161*a(n-19) -40159638312427*a(n-20) +64516913652731*a(n-21) +156045296765995*a(n-22) -420566441597426*a(n-23) -370280346825369*a(n-24) +1896413617041966*a(n-25) +116389803065562*a(n-26) -6294489120026476*a(n-27) +3276203616430926*a(n-28) +15595777875272897*a(n-29) -16460601434798787*a(n-30) -28226347625685658*a(n-31) +48769501191854025*a(n-32) +33790985922392165*a(n-33) -103566624274387128*a(n-34) -14092986869301021*a(n-35) +166251919114377278*a(n-36) -42448161654003304*a(n-37) -204489830757025452*a(n-38) +122191197037291914*a(n-39) +190358294144265720*a(n-40) -187149557880579966*a(n-41) -126886223520685655*a(n-42) +202881065998585776*a(n-43) +48430501432590311*a(n-44) -166690729492859431*a(n-45) +7966686261513292*a(n-46) +105987736523260481*a(n-47) -29122781258292427*a(n-48) -52060927021094606*a(n-49) +25753859318524430*a(n-50) +19255556374065854*a(n-51) -14828585120461188*a(n-52) -4947770560990843*a(n-53) +6298341381835328*a(n-54) +612580881680123*a(n-55) -2045467552761627*a(n-56) +138186931607999*a(n-57) +511326986781121*a(n-58) -103859318856876*a(n-59) -97199221359635*a(n-60) +32822680160399*a(n-61) +13533015888821*a(n-62) -6911150350543*a(n-63) -1244066877631*a(n-64) +1050842336467*a(n-65) +45142886695*a(n-66) -117141894727*a(n-67) +6151516604*a(n-68) +9443703556*a(n-69) -1222899551*a(n-70) -528402967*a(n-71) +108249641*a(n-72) +18688372*a(n-73) -5759268*a(n-74) -311108*a(n-75) +185856*a(n-76) -2569*a(n-77) -3298*a(n-78) +186*a(n-79) +24*a(n-80) -2*a(n-81)

A205822 Number of (n+1) X 8 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.

Original entry on oeis.org

10032, 96402, 1002240, 12281976, 156410676, 2053746000, 27196042704, 362290015758, 4834444163676, 64590005130132, 863239060201212, 11540056054532778, 154281470426981232, 2062735520293913052
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2012

Keywords

Comments

Column 7 of A205823.

Examples

			Some solutions for n=4:
..2..1..2..0..2..0..0..0....0..0..0..0..2..1..2..1....0..2..1..1..0..0..2..2
..2..0..2..1..1..1..2..1....2..1..2..1..2..0..2..0....1..2..0..2..2..1..1..0
..1..1..2..0..2..0..2..0....2..0..0..0..2..1..1..1....0..2..1..1..0..0..2..0
..2..0..2..1..1..0..1..1....2..1..2..1..2..0..2..0....1..2..0..2..2..1..1..0
..1..1..2..0..2..0..2..0....0..0..2..0..2..1..1..0....0..2..1..1..0..0..2..0
		

A205816 Number of (n+1) X (n+1) 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.

Original entry on oeis.org

24, 216, 2880, 67944, 2791080, 206195280, 27196042704, 6437088838008, 2723887997403024, 2064821553536444652, 2798458452635665138464
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2012

Keywords

Comments

Diagonal of A205823.

Examples

			Some solutions for n=4:
..2..2..1..0..0....1..2..0..2..2....0..1..0..2..2....2..0..2..2..1
..1..0..1..2..1....0..2..1..1..0....2..2..0..1..0....2..1..1..0..0
..1..2..1..0..0....1..2..0..2..2....0..1..0..2..2....2..0..2..2..1
..1..0..1..2..1....0..2..1..1..0....2..2..0..1..0....1..1..1..0..0
..1..2..1..0..0....1..2..0..2..2....0..1..0..2..0....2..0..2..2..1
		
Showing 1-7 of 7 results.