This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205840 #19 Oct 25 2024 04:52:31 %S A205840 1,2,1,3,6,5,4,10,9,8,4,16,13,27,26,25,21,17,44,43,42,38,34,17,71,68, %T A205840 55,116,115,114,110,106,89,72,188,187,186,182,178,161,144,72,304,301, %U A205840 288,233,493,492,491,487,483,466,449,377,305,798,797,796,792,788 %N A205840 [s(k)-s(j)]/2, where the pairs (k,j) are given by A205837 and A205838. %C A205840 Let s(n)=F(n+1), where F=A000045 (Fibonacci numbers), so that s=(1,2,3,5,8,13,21,...). If c is a positive integer, there are infinitely many pairs (k,j) such that c divides s(k)-s(j). The set of differences s(k)-s(j) is ordered as a sequence at A204922. Guide to related sequences: %C A205840 c....k..........j..........s(k)-s(j)....[s(k)-s(j)]/c %C A205840 2....A205837....A205838....A205839......A205840 %C A205840 3....A205842....A205843....A205844......A205845 %C A205840 4....A205847....A205848....A205849......A205850 %C A205840 5....A205852....A205853....A205854......A205855 %C A205840 6....A205857....A205858....A205859......A205860 %C A205840 7....A205862....A205863....A205864......A205865 %C A205840 8....A205867....A205868....A205869......A205870 %C A205840 9....A205872....A205873....A205874......A205875 %C A205840 10...A205877....A205878....A205879......A205880 %e A205840 The first six terms match these differences: %e A205840 s(3)-s(1) = 3-1 = 2 = 2*1 %e A205840 s(4)-s(1) = 5-1 = 4 = 2*2 %e A205840 s(4)-s(3) = 5-3 = 2 = 2*1 %e A205840 s(5)-s(2) = 8-2 = 6 = 2*3 %e A205840 s(6)-s(1) = 13-1 = 12 = 2*6 %e A205840 s(6)-s(3) = 13-3 = 10 = 2*5 %t A205840 s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60; %t A205840 f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; %t A205840 Table[s[n], {n, 1, 30}] %t A205840 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205840 Table[u[m], {m, 1, z1}] (* A204922 *) %t A205840 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205840 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205840 d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] %t A205840 c = 2; t = d[c] (* A205556 *) %t A205840 k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] %t A205840 j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 %t A205840 Table[k[n], {n, 1, z2}] (* A205837 *) %t A205840 Table[j[n], {n, 1, z2}] (* A205838 *) %t A205840 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205839 *) %t A205840 Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205840 *) %Y A205840 Cf. A204890, A205587, A205839. %K A205840 nonn %O A205840 1,2 %A A205840 _Clark Kimberling_, Feb 01 2012