This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205845 #8 Mar 30 2012 18:58:12 %S A205845 1,2,1,4,6,11,7,18,14,7,29,28,27,47,41,77,76,75,48,125,124,123,96,48, %T A205845 203,199,192,185,328,322,281,532,528,521,514,329,861,857,850,843,658, %U A205845 329,1393,1392,1391,1364,1316,1268,2254,2248,2207,1926,3648 %N A205845 [s(k)-s(j)]/3, where the pairs (k,j) are given by A205842 and A205843, and s(k) denotes the (k+1)-st Fibonacci number. %C A205845 For a guide to related sequences, see A205840. %C A205845 The first six terms match these differences: %C A205845 s(4)-s(2) = 5-2 = 3 = 3*1 %C A205845 s(5)-s(2) = 8-2 = 6 = 3*2 %C A205845 s(5)-s(4) = 8-5 = 3 = 3*1 %C A205845 s(6)-s(1) = 13-1 = 12 = 3*4 %C A205845 s(7)-s(3) = 21-3 = 18 = 3*6 %C A205845 s(8)-s(1) = 34-1 = 33 + 3*11 %C A205845 (See the program at A205842.) %e A205845 The first six terms match these differences: %e A205845 s(4)-s(2) = 5-2 = 3 = 3*1 %e A205845 s(5)-s(2) = 8-2 = 6 = 3*2 %e A205845 s(5)-s(4) = 8-5 = 3 = 3*1 %e A205845 s(6)-s(1) = 13-1 = 12 = 3*4 %e A205845 s(7)-s(3) = 21-3 = 18 = 3*6 %e A205845 s(8)-s(1) = 34-1 = 33 + 3*11 %t A205845 s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60; %t A205845 f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; %t A205845 Table[s[n], {n, 1, 30}] %t A205845 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205845 Table[u[m], {m, 1, z1}] (* A204922 *) %t A205845 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205845 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205845 d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] %t A205845 c = 3; t = d[c] (* A205841 *) %t A205845 k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] %t A205845 j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 %t A205845 Table[k[n], {n, 1, z2}] (* A205842 *) %t A205845 Table[j[n], {n, 1, z2}] (* A205843 *) %t A205845 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205844 *) %t A205845 Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205845 *) %Y A205845 Cf. A204890, A205842, A205845. %K A205845 nonn %O A205845 1,2 %A A205845 _Clark Kimberling_, Feb 01 2012