A205850 [s(k)-s(j)]/4, where the pairs (k,j) are given by A205847 and A205848, and s(k) denotes the (k+1)-st Fibonacci number.
1, 3, 2, 5, 4, 2, 8, 13, 22, 21, 19, 17, 34, 58, 57, 55, 53, 36, 94, 93, 91, 89, 72, 36, 152, 144, 246, 233, 399, 398, 396, 394, 377, 341, 305, 644, 610, 1045, 1044, 1042, 1040, 1023, 987, 951, 646, 1691, 1690, 1688, 1686, 1669, 1633, 1597, 1292, 646
Offset: 1
Keywords
Examples
The first six terms match these differences: s(4)-s(1) = 5-1 = 4 = 4*1 s(6)-s(1) = 13-1 = 12= 4*3 s(6)-s(4) = 13-5 = 8 = 4*2 s(7)-s(1) = 21-1 = 20 = 4*5 s(7)-s(4) = 21-5 = 16 = 4*4 s(7)-s(6) = 21-13 = 8 = 4*2
Programs
-
Mathematica
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 4; t = d[c] (* A205846 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205847 *) Table[j[n], {n, 1, z2}] (* A205848 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205849 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205850 *)
Comments