A205855 [s(k)-s(j)]/5, where the pairs (k,j) are given by A205852 and A205853, and s(k) denotes the (k+1)-st Fibonacci number.
1, 2, 1, 4, 10, 11, 22, 11, 46, 45, 44, 75, 121, 111, 197, 122, 319, 244, 122, 510, 499, 488, 836, 832, 1352, 1342, 1231, 2189, 2185, 1353, 3542, 3538, 2706, 1353, 5731, 5656, 5534, 5412, 9273, 9272, 9271, 9227, 15004, 14994, 14883, 13652
Offset: 1
Keywords
Examples
The first six terms match these differences: s(5)-s(3) = 8-3 = 5 = 5*1 s(6)-s(3) = 13-3 = 10 = 5*2 s(6)-s(5) = 13-8 = 5 = 5*1 s(7)-s(1) = 21-1 = 20 = 5*4 s(9)-s(4) = 55-5 = 50 = 5*10 s(10)-s(8) = 89-34 = 55 =5*11
Programs
-
Mathematica
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 5; t = d[c] (* A205851 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205852 *) Table[j[n], {n, 1, z2}] (* A205853 *) Table[s[k[n]]-s[j[n]], {n,1,z2}] (* A205854 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205855 *)
Comments