This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205857 #5 Mar 30 2012 18:58:12 %S A205857 5,6,7,9,9,10,12,12,13,13,13,14,15,15,16,16,16,17,17,18,18,18,18,19, %T A205857 19,19,20,20,21,21,21,21,21,22,22,22,22,23,24,24,24,24,24,25,25,25,25, %U A205857 25,25,26,26,26,27,27,27,27,28,28,28,28 %N A205857 Numbers k for which 6 divides s(k)-s(j) for some j<k; each k occurs once for each such j; s(k) denotes the (k+1)-st Fibonacci number. %C A205857 For a guide to related sequences, see A205840. %e A205857 The first six terms match these differences: %e A205857 s(5)-s(2) = 8-2 = 6 = 6*1 %e A205857 s(6)-s(1) = 13-1 = 12 = 6*2 %e A205857 s(7)-s(3) = 21-3 = 18 = 6*3 %e A205857 s(9)-s(1) = 55-1 = 54 = 6*9 %e A205857 s(9)-s(6) = 55-13 = 42 = 6*7 %e A205857 s(10)-s(4) = 89-5 = 84 =6*14 %t A205857 s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60; %t A205857 f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; %t A205857 Table[s[n], {n, 1, 30}] %t A205857 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205857 Table[u[m], {m, 1, z1}] (* A204922 *) %t A205857 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205857 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205857 d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] %t A205857 c = 6; t = d[c] (* A205856 *) %t A205857 k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] %t A205857 j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 %t A205857 Table[k[n], {n, 1, z2}] (* A205857 *) %t A205857 Table[j[n], {n, 1, z2}] (* A205858 *) %t A205857 Table[s[k[n]]-s[j[n]], {n, 1, z2}] (* A205859 *) %t A205857 Table[(s[k[n]]-s[j[n]])/c, {n,1,z2}] (* A205860 *) %Y A205857 Cf. A204892, A205857, A205860. %K A205857 nonn %O A205857 1,1 %A A205857 _Clark Kimberling_, Feb 02 2012