A205860 [s(k)-s(j)]/6, where the pairs (k,j) are given by A205857 and A205858, and s(k) denotes the (k+1)-st Fibonacci number.
1, 2, 3, 9, 7, 14, 38, 24, 62, 48, 24, 96, 164, 161, 266, 264, 257, 425, 329, 696, 682, 658, 634, 1127, 1124, 963, 1824, 1823, 2951, 2937, 2913, 2889, 2255, 4776, 4774, 4767, 4510, 7704, 12504, 12502, 12495, 12238, 7728, 20232, 20230, 20223
Offset: 1
Keywords
Examples
The first six terms match these differences: s(5)-s(2) = 8-2 = 6 = 6*1 s(6)-s(1) = 13-1 = 12 = 6*2 s(7)-s(3) = 21-3 = 18 = 6*3 s(9)-s(1) = 55-1 = 54 = 6*9 s(9)-s(6) = 55-13 = 42 = 6*7 s(10)-s(4) = 89-5 = 84 =6*14
Programs
-
Mathematica
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 6; t = d[c] (* A205856 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205857 *) Table[j[n], {n, 1, z2}] (* A205858 *) Table[s[k[n]]-s[j[n]], {n, 1, z2}] (* A205859 *) Table[(s[k[n]]-s[j[n]])/c, {n,1,z2}] (* A205860 *)
Comments