This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205865 #5 Mar 30 2012 18:58:12 %S A205865 1,3,6,3,12,33,52,49,46,87,86,138,228,227,141,369,368,282,141,597,564, %T A205865 966,1563,1551,2530,2529,2443,2302,2161,4092,4089,4086,4040,6621,6483, %U A205865 10716,10713,10710,10664,6624,17340,17337,17334,17288,13248 %N A205865 [s(k)-s(j)]/7, where the pairs (k,j) are given by A205862 and A205863, and s(k) denotes the (k+1)-st Fibonacci number. %C A205865 For a guide to related sequences, see A205840. %e A205865 The first six terms match these differences: %e A205865 s(5)-s(1) = 8-1 = 7 = 7*1 %e A205865 s(8)-s(6) = 34-13 = 21 = 7*3 %e A205865 s(9)-s(6) = 55-13 = 42 = 7*6 %e A205865 s(9)-s(8) = 55-34 = 21 = 7*3 %e A205865 s(10)-s(4) = 89-5 = 84 = 7*12 %e A205865 s(13)-s(6) = 377-13 = 364 =7*52 %t A205865 s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60; %t A205865 f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; %t A205865 Table[s[n], {n, 1, 30}] %t A205865 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205865 Table[u[m], {m, 1, z1}] (* A204922 *) %t A205865 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205865 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205865 d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] %t A205865 c = 7; t = d[c] (* A205861 *) %t A205865 k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] %t A205865 j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 %t A205865 Table[k[n], {n, 1, z2}] (* A205862 *) %t A205865 Table[j[n], {n, 1, z2}] (* A205863 *) %t A205865 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205864 *) %t A205865 Table[(s[k[n]]-s[j[n]])/c, {n,1,z2}] (* A205865 *) %Y A205865 Cf. A204892, A205862, A205864. %K A205865 nonn %O A205865 1,2 %A A205865 _Clark Kimberling_, Feb 02 2012