A205870 [s(k)-s(j)]/8, where the pairs (k,j) are given by A205867 and A205868, and s(k) denotes the (k+1)-st Fibonacci number.
1, 2, 1, 4, 11, 17, 29, 18, 47, 36, 18, 76, 72, 123, 199, 198, 197, 322, 305, 522, 521, 520, 323, 845, 844, 843, 646, 323, 1368, 1364, 1292, 2207, 3582, 3571, 3553, 3535, 5795, 5778, 5473, 9378, 9367, 9349, 9331, 5796, 15174, 15163, 15145, 15127
Offset: 1
Keywords
Examples
The first six terms match these differences: s(6)-s(4) = 13-5 = 8 = 8*1 s(7)-s(4) = 21-5 = 16 = 8*2 s(7)-s(6) = 21-13 = 8 = 8*1 s(8)-s(2) = 34-2 = 32 = 8*4 s(10)-s(1) = 89-1 = 88 = 8*11 s(11)-s(5) = 144-8 = 136 =8*17
Programs
-
Mathematica
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 600; z2 = 50; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 8; t = d[c] (* A205866 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205867 *) Table[j[n], {n, 1, z2}] (* A205868 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205869 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205870 *)
Comments