This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205872 #6 Mar 30 2012 18:58:12 %S A205872 7,9,10,12,12,13,13,13,14,16,17,17,18,19,20,21,21,21,21,22,22,22,23, %T A205872 24,24,24,24,25,25,25,25,25,26,26,27,27,28,28,29,29,29,29,29,30,30,31, %U A205872 31,31,32,32 %N A205872 Numbers k for which 9 divides s(k)-s(j) for some j<k; each k occurs once for each such j; s(k) denotes the (k+1)-st Fibonacci number. %C A205872 For a guide to related sequences, see A205840. %e A205872 The first six terms match these differences: %e A205872 s(7)-s(3) = 21-3 = 18 = 9*2 %e A205872 s(9)-s(1) = 55-1 = 54 = 9*6 %e A205872 s(10)-s(5) = 89-8 = 81 = 9*9 %e A205872 s(12)-s(5) = 233-8 = 225 = 9*25 %e A205872 s(12)-s(10) = 233-89 = 144 = 9*16 %e A205872 s(13)-s(5) = 377-8 = 369 =9*41 %t A205872 s[n_] := s[n] = Fibonacci[n + 1]; z1 = 600; z2 = 50; %t A205872 f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; %t A205872 Table[s[n], {n, 1, 30}] %t A205872 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205872 Table[u[m], {m, 1, z1}] (* A204922 *) %t A205872 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205872 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205872 d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] %t A205872 c = 9; t = d[c] (* A205871 *) %t A205872 k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] %t A205872 j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 %t A205872 Table[k[n], {n, 1, z2}] (* A205872 *) %t A205872 Table[j[n], {n, 1, z2}] (* A205873 *) %t A205872 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205874 *) %t A205872 Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205875 *) %Y A205872 Cf. A204892, A205873, A205875. %K A205872 nonn %O A205872 1,1 %A A205872 _Clark Kimberling_, Feb 02 2012