This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205875 #6 Mar 30 2012 18:58:12 %S A205875 2,6,9,25,16,41,32,16,64,176,287,281,464,642,1216,1967,1958,1942,1926, %T A205875 3184,3178,2897,5136,8336,8330,8049,5152,13488,13482,13201,10304,5152, %U A205875 21824,20608,35312,35310,57136,56672,92448,92439,92423,92407 %N A205875 [s(k)-s(j)]/9, where the pairs (k,j) are given by A205872 and A205873, and s(k) denotes the (k+1)-st Fibonacci number. %C A205875 For a guide to related sequences, see A205840. %e A205875 The first six terms match these differences: %e A205875 s(7)-s(3) = 21-3 = 18 = 9*2 %e A205875 s(9)-s(1) = 55-1 = 54 = 9*6 %e A205875 s(10)-s(5) = 89-8 = 81 = 9*9 %e A205875 s(12)-s(5) = 233-8 = 225 = 9*25 %e A205875 s(12)-s(10) = 233-89 = 144 = 9*16 %e A205875 s(13)-s(5) = 377-8 = 369 =9*41 %t A205875 s[n_] := s[n] = Fibonacci[n + 1]; z1 = 600; z2 = 50; %t A205875 f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; %t A205875 Table[s[n], {n, 1, 30}] %t A205875 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205875 Table[u[m], {m, 1, z1}] (* A204922 *) %t A205875 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205875 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205875 d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] %t A205875 c = 9; t = d[c] (* A205871 *) %t A205875 k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] %t A205875 j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 %t A205875 Table[k[n], {n, 1, z2}] (* A205872 *) %t A205875 Table[j[n], {n, 1, z2}] (* A205873 *) %t A205875 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205874 *) %t A205875 Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205875 *) %Y A205875 Cf. A204892, A205872, A205874. %K A205875 nonn %O A205875 1,1 %A A205875 _Clark Kimberling_, Feb 02 2012