This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205877 #5 Mar 30 2012 18:58:12 %S A205877 6,7,9,11,12,12,15,16,16,17,17,18,18,19,19,21,21,21,22,22,22,23,24,24, %T A205877 24,25,25,25,26,26,27,27,27,27,28,29,30,30,31,31,31,32,32,32,33,33,33, %U A205877 33,34,34 %N A205877 Numbers k for which 10 divides s(k)-s(j) for some j<k; each k occurs once for each such j; s(k) denotes the (k+1)-st Fibonacci number. %C A205877 For a guide to related sequences, see A205840. %e A205877 The first three terms match these differences: %e A205877 s(6)-s(3) = 13-3 = 10 = 10*1 %e A205877 s(7)-s(1) = 21-1 = 20 = 10*2 %e A205877 s(9)-s(4) = 55-5 = 50 = 10*5 %t A205877 s[n_] := s[n] = Fibonacci[n + 1]; z1 = 600; z2 = 50; %t A205877 f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; %t A205877 Table[s[n], {n, 1, 30}] %t A205877 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205877 Table[u[m], {m, 1, z1}] (* A204922 *) %t A205877 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205877 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205877 d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] %t A205877 c = 10; t = d[c] (* A205876 *) %t A205877 k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] %t A205877 j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 %t A205877 Table[k[n], {n, 1, z2}] (* A205877 *) %t A205877 Table[j[n], {n, 1, z2}] (* A205878 *) %t A205877 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205879 *) %t A205877 Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205880 *) %Y A205877 Cf. A204892, A205878, A205880. %K A205877 nonn %O A205877 1,1 %A A205877 _Clark Kimberling_, Feb 02 2012