This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205880 #5 Mar 30 2012 18:58:12 %S A205880 1,2,5,11,23,22,61,122,61,255,244,418,416,676,671,1771,1769,1353,2828, %T A205880 2767,2706,4636,7502,7497,6826,12139,12138,12116,19641,15005,31781, %U A205880 31779,31363,30010,51414,83143,134618,83204,217822,166408,83204 %N A205880 [s(k)-s(j)]/10, where the pairs (k,j) are given by A205877 and A205878, and s(k) denotes the (k+1)-st Fibonacci number. %C A205880 For a guide to related sequences, see A205840. %e A205880 The first three terms match these differences: %e A205880 s(6)-s(3) = 13-3 = 10 = 10*1 %e A205880 s(7)-s(1) = 21-1 = 20 = 10*2 %e A205880 s(9)-s(4) = 55-5 = 50 = 10*5 %t A205880 s[n_] := s[n] = Fibonacci[n + 1]; z1 = 600; z2 = 50; %t A205880 f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; %t A205880 Table[s[n], {n, 1, 30}] %t A205880 u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] %t A205880 Table[u[m], {m, 1, z1}] (* A204922 *) %t A205880 v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] %t A205880 w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] %t A205880 d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] %t A205880 c = 10; t = d[c] (* A205876 *) %t A205880 k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] %t A205880 j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 %t A205880 Table[k[n], {n, 1, z2}] (* A205877 *) %t A205880 Table[j[n], {n, 1, z2}] (* A205878 *) %t A205880 Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205879 *) %t A205880 Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205880 *) %Y A205880 Cf. A204892, A205877, A205879. %K A205880 nonn %O A205880 1,2 %A A205880 _Clark Kimberling_, Feb 02 2012