This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A205947 #35 Jul 20 2015 16:43:24 %S A205947 561,2465,62745,162401,656601,1909001,5444489,11921001,19384289, %T A205947 26719701,45318561,84350561,151530401,174352641,221884001,230996949, %U A205947 275283401,434932961,662086041,684106401,689880801,710382401 %N A205947 Carmichael numbers not congruent to 1 modulo 6. %C A205947 These numbers are very sparse; most Carmichael numbers are 1 mod 6. - _Charles R Greathouse IV_, May 02 2012 %C A205947 Not known to be infinite, see Matomäki. - _Charles R Greathouse IV_, Jun 13 2012 %C A205947 From _Robert Israel_, Jul 20 2015: (Start) %C A205947 Now known to be infinite, see Wright. %C A205947 No member of this sequence is divisible by any prime of the form 6k+1, hence all prime factors for this sequence are members of A045410. (End) %H A205947 Charles R Greathouse IV, <a href="/A205947/b205947.txt">Table of n, a(n) for n = 1..10000</a> %H A205947 Kaisa Matomäki, <a href="http://users.utu.fi/ksmato/papers/CarmichaelAPs.pdf">Carmichael numbers in arithmetic progressions</a>, Journal of the Australian Mathematical Society 94:2 (2013), pp. 268-275. %H A205947 T. Wright, <a href="http://dx.doi.org/10.1112/blms/bdt013">Infinitely many Carmichael numbers in arithmetic progressions</a>, Bull. London Math. Soc. (2013) 45 (5): 943-952. <a href="http://arxiv.org/abs/1212.5850">arXiv:1212.5850</a> %F A205947 Wright shows that there are at least x^(K/(log log log x)^2) terms up to x, for an explicitly computable (though not computed) constant K. - _Charles R Greathouse IV_, Jul 20 2015 %p A205947 korselt:= proc(n) uses numtheory; local p; %p A205947 if isprime(n) or not issqrfree(n) then return false fi; %p A205947 for p in factorset(n) do %p A205947 if n-1 mod (p-1) <> 0 then return false fi %p A205947 od; %p A205947 true %p A205947 end proc: %p A205947 select(korselt, [seq(seq(6*i+j,j=[3,5]),i=1..10^5)]); # _Robert Israel_, Jul 20 2015 %t A205947 Select[Range[100000], !PrimeQ[#] && IntegerQ[(#-1)/CarmichaelLambda[#]] && !Mod[#,6]==1&] %o A205947 (PARI) Korselt(n,f=factor(n))=for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1 %o A205947 list(lim)={ %o A205947 my(v=List(),p=2); %o A205947 forstep(n=561,lim,[12,6], %o A205947 if(Korselt(n),listput(v,n)) %o A205947 ); %o A205947 forprime(q=3,lim, %o A205947 forstep(n=p+if(p%6<5,4,6),q-2,6, %o A205947 if(Korselt(n),listput(v,n)) %o A205947 ); %o A205947 p=q %o A205947 ); %o A205947 vecsort(Vec(v)) %o A205947 }; \\ _Charles R Greathouse IV_, Apr 25 2012 %Y A205947 Cf. A002997, A045410, A258801. %K A205947 nonn %O A205947 1,1 %A A205947 _José María Grau Ribas_, Feb 02 2012