cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205957 a(n) = exp(-Sum_{k=1..n} Sum_{d|k, d prime} moebius(d)*log(k/d)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 34560, 34560, 483840, 7257600, 58060800, 58060800, 3135283200, 3135283200, 125411328000, 2633637888000, 57940033536000, 57940033536000, 5562243219456000, 27811216097280000, 723091618529280000, 6507824566763520000
Offset: 0

Views

Author

Peter Luschny, Sep 01 2012

Keywords

Comments

The author proposes to denote this sequence lcm_{p}(n) as lcm(n) = lcm({1,2,..n}) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)).
For n > 0 the a(n) are the partial products of A205959(n), which is the exponential of a modified von Mangoldt function where the divisors are restricted to prime divisors.

Crossrefs

Programs

  • Maple
    with(numtheory):
    A205957 := proc(n) simplify(exp(-add(add(mobius(d)*log(k/d), d=select(isprime, divisors(k))),k=1..n))) end: seq(A205957(i), i=0..27);
  • Mathematica
    a[n_] := Exp[-Sum[ MoebiusMu[p] Log[k/p], {k, 1, n}, {p, FactorInteger[k][[All, 1]]}]]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 27 2013 *)
  • PARI
    a(n)=prod(k=4,n,my(f=factor(k)[, 1]); prod(i=1, #f, k/f[i])) \\ Charles R Greathouse IV, Jun 27 2013
  • Sage
    def A205957(n) : return simplify(exp(-add(add(moebius(p)*log(k/p) for p in prime_divisors(k)) for k in (1..n))))
    

Formula

a(n) = Product_{p prime, p<=n} (floor(n/p)!). - Ridouane Oudra, Nov 22 2021