A205999 Inverse Euler transform of A195980.
1, 1, 2, 4, 10, 23, 61, 157, 426, 1163, 3253, 9172, 26236, 75634, 220021, 644305, 1898977, 5626720, 16754652, 50104781, 150427938, 453214878, 1369857943, 4152559458, 12621816592, 38459047705, 117453028937, 359455509767, 1102239999454, 3386090204843, 10419804578693, 32115276396739, 99131502581481, 306422345148052, 948423189115351
Offset: 0
Keywords
Links
- N. J. A. Sloane, Transforms
- A. D. Sokal, The leading root of the partial theta function, arXiv preprint arXiv:1106.1003 [math.CO], 2011-2012; Adv. Math. 229 (2012), no. 5, 2603-2621.
Programs
-
Mathematica
nmax = 35; theta0[x_, y_] = Sum[x^n y^(n (n-1)/2), {n, 0, (1/2) (1 + Sqrt[1 + 8 nmax]) // Ceiling}]; xi0[y_] = -Sum[b[n] y^n, {n, 0, nmax}]; cc = CoefficientList[theta0[xi0[y], y] + O[y]^(nmax + 1) // Normal // Collect[#, y]&, y]; Do[s[n] = Solve[cc[[n+1]] == 0][[1, 1]]; cc = cc /. s[n], {n, 0, nmax}]; A195980 = Table[b[n] /. s[n], {n, 1, nmax}]; mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0]; EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i b[[i]] - Sum[c[[d]] b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i) Sum[mob[i, d] c[[d]], {d, 1, i}]]]; Return[a]]; EULERi[A195980] (* Jean-François Alcover, Oct 04 2018 *)
Comments