cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206022 Riordan array (1, x*exp(arcsinh(-2*x))).

This page as a plain text file.
%I A206022 #12 Dec 25 2023 18:14:26
%S A206022 1,0,1,0,-2,1,0,2,-4,1,0,0,8,-6,1,0,-2,-8,18,-8,1,0,0,0,-32,32,-10,1,
%T A206022 0,4,8,30,-80,50,-12,1,0,0,0,0,128,-160,72,-14,1,0,-10,-16,-28,-112,
%U A206022 350,-280,98,-16,1,0,0,0
%N A206022 Riordan array (1, x*exp(arcsinh(-2*x))).
%C A206022 Riordan array (1, x*(sqrt(1+4x^2)-2x)); inverse of Riordan array (1, x/sqrt(1-4x)), see A205813.
%C A206022 The g.f. for row sums (1,1,-1,-1,3,1,-9,1,27,13,-81,67,243,...) is (1+2*x^2+x*sqrt(1+4*x^2))/(1+3*x^2).
%C A206022 Triangle T(n,k), read by rows, given by (0, -2, 1, -1, 1, -1, 1, -1, 1, -1, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
%F A206022 T(n,n) = 1, T(n+1,n) = -2n = -A005843(n), T(n+2,n) = 2*n^2 = A001105(n), T(n+3,n) = -A130809(n+1), T(2n,n) = A009117(n), T(2n+3,1) = (-1)^n*2*A000108(n).
%F A206022 T(n,k) = T(n-2,k-2) - 4*T(n-2,k-1), for k >= 2.
%e A206022 Triangle begins:
%e A206022   1
%e A206022   0,   1
%e A206022   0,  -2,   1
%e A206022   0,   2,  -4,   1
%e A206022   0,   0,   8,  -6,    1,
%e A206022   0,  -2,  -8,  18,   -8,    1
%e A206022   0,   0,   0, -32,   32,  -10,     1
%e A206022   0,   4,   8,  30,  -80,   50,   -12,    1
%e A206022   0,   0,   0,   0,  128, -160,    72,  -14,    1
%e A206022   0, -10, -16, -28, -112,  350,  -280,   98,  -16,   1
%e A206022   0,   0,   0,   0,    0, -512,   768, -448,  128, -18,   1
%e A206022   0,  28,  40,  54,   96,  420, -1512, 1470, -672, 162, -20, 1
%Y A206022 Cf. A104624 (column k=1).
%K A206022 easy,sign,tabl
%O A206022 0,5
%A A206022 _Philippe Deléham_, Feb 02 2012