This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206031 #15 Sep 10 2017 11:35:25 %S A206031 1,3,4,21,6,144,8,315,52,324,12,28224,14,576,576,9765,18,73008,20, %T A206031 95256,1024,1296,24,25401600,186,1764,2080,225792,30,26873856,32, %U A206031 615195,2304,2916,2304,1302170688,38,3600,3136,128595600,42,84934656,44,762048,584064 %N A206031 a(n) = product of numbers k <= sigma(n) such that k = sigma(d) for any divisor d of n where sigma = A000203. %C A206031 Sequence is not the same as A206032(n): a(66) = 35831808, A206032(66) = 429981696. %C A206031 In sequence A206032 are multiplied all values of sigma(d) of all divisors d of numbers n, in sequence a(n) are multiplied only distinct values of sigma(d) of all divisors d of numbers n. %H A206031 Antti Karttunen, <a href="/A206031/b206031.txt">Table of n, a(n) for n = 1..4096</a> %F A206031 a(p) = p+1, a(pq) = ((p+1)*(q+1))^2 for p, q = distinct primes. %e A206031 For n=6 -> divisors d of 6: 1,2,3,6; corresponding values of sigma(d): 1,3,4,12; a(6) = Product of k = 1*3*4*12 = 144. For n=66 -> divisors d of 66: 1,2,3,6,11,22,33,66; corresponding values of sigma(d): 1,3,4,12,12,36,48,144; a(66) = Product of k = 1*3*4*12*36*48*144 = 35831808. %t A206031 Table[Times @@ Union[DivisorSigma[1, Divisors[n]]], {n, 100}] (* _T. D. Noe_, Feb 10 2012 *) %o A206031 (PARI) a(n)=my(d=vecsort(apply(sigma,divisors(n)),,8));prod(i=2,#d,d[i]) \\ _Charles R Greathouse IV_, Feb 19 2013 %Y A206031 Cf. A184388, A184395, A206032, A206033. %K A206031 nonn %O A206031 1,2 %A A206031 _Jaroslav Krizek_, Feb 03 2012