cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206073 Binary numbers that represent irreducible polynomials over the rationals with coefficients restricted to {0,1}.

This page as a plain text file.
%I A206073 #16 Mar 30 2012 18:58:12
%S A206073 10,11,101,111,1011,1101,10001,10011,10111,11001,11101,11111,100101,
%T A206073 101001,101011,101111,110101,110111,111011,111101,1000011,1000101,
%U A206073 1000111,1001001,1001101,1001111,1010001,1010011,1010111,1011001
%N A206073 Binary numbers that represent irreducible polynomials over the rationals with coefficients restricted to {0,1}.
%C A206073 The polynomial x^d(0) + x^d(1) + ... + d(n), where d(i) is 0 or 1 for 0<=i<=n and d(0)=1, matches the binary number d(0)d(1)...d(n).  (This is an enumeration of all the nonzero polynomials with coefficients in {0,1}, not just those that are irreducible.)
%e A206073 The matching of binary numbers to the first six polynomials irreducible over the field of rational numbers:
%e A206073 10 .... x
%e A206073 11 .... x + 1
%e A206073 101 ... x^2 + 1
%e A206073 111 ... x^2 + x + 1
%e A206073 1011 .. x^3 + x + 1
%t A206073 t = Table[IntegerDigits[n, 2], {n, 1, 850}];
%t A206073 b[n_] := Reverse[Table[x^k, {k, 0, n}]]
%t A206073 p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]
%t A206073 Table[p[n, x], {n, 1, 15}]
%t A206073 u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]],
%t A206073 AppendTo[u, n]], {n, 300}];
%t A206073 u                         (* A206074 *)
%t A206073 Complement[Range[200], u] (* A205783 *)
%t A206073 b[n_] := FromDigits[IntegerDigits[u, 2][[n]]]
%t A206073 Table[b[n], {n, 1, 40}]   (* A206073 *)
%Y A206073 Cf. A171000 (irreducible Boolean polynomials).
%Y A206073 Cf. A205783 (complement), A206074 (base 10).
%K A206073 nonn,base
%O A206073 1,1
%A A206073 _Clark Kimberling_, Feb 03 2012