cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206075 Nonprimes in A206074 (a coding of irreducible polynomials).

Original entry on oeis.org

1, 25, 55, 69, 77, 81, 87, 91, 115, 117, 121, 143, 145, 169, 171, 185, 203, 205, 209, 213, 247, 253, 261, 265, 275, 285, 289, 295, 299, 301, 305, 319, 321, 323, 327, 329, 333, 339, 351, 355, 357, 361, 369, 375, 377, 391, 395, 405, 407, 415, 425, 437
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2012

Keywords

Examples

			Under the coding of irreducible polynomials over {0,1} which is given at A206074, the polynomials matching the first five terms of A206075 are indicated here:
1 .... 1
25 ... x^4 + x^3 + 1
55 ... x^5 + x^4 + x^2 + x + 1
69 ... x^6 + x^2 + 1
77 ... x^6 + x^3 + x^2 + 1
		

Crossrefs

Cf. A206074.

Programs

  • Mathematica
    t = Table[IntegerDigits[n, 2], {n, 1, 1500}];
    b[n_] := Reverse[Table[x^k, {k, 0, n}]]
    p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]
    u = {1}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]], AppendTo[u, n]], {n, 1000}]
    nonprimes = Complement[Range[800], Table[Prime[n], {n, 1, 800}]];
    Intersection[u, nonprimes]  (* A206075 *)
  • PARI
    is(n)=n==1 || (polisirreducible( Pol(binary(n)) ) && !isprime(n)) \\ Charles R Greathouse IV, May 14 2015