cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206159 Numbers needing at most two digits to write all positive divisors in decimal representation.

This page as a plain text file.
%I A206159 #51 May 04 2022 00:28:53
%S A206159 1,2,3,5,7,11,13,17,19,22,31,33,41,55,61,71,77,101,113,121,131,151,
%T A206159 181,191,199,211,311,313,331,661,811,881,911,919,991,1111,1117,1151,
%U A206159 1171,1181,1511,1777,1811,1999,2111,2221,3313,3331,4111,4441,6661,7177,7717,8111,9199,10111,11113
%N A206159 Numbers needing at most two digits to write all positive divisors in decimal representation.
%C A206159 The terms of A203897 having all divisors in A020449 (in particular, the first 1022 terms) are a subsequence. - _M. F. Hasler_, May 02 2022
%C A206159 Since 1 and the term itself are divisors, one must only check repdigits and those containing only 1 and another digit. - _Michael S. Branicky_, May 02 2022
%H A206159 Michael S. Branicky, <a href="/A206159/b206159.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..500 from M. F. Hasler)
%F A206159 A095048(a(n)) <= 2.
%t A206159 Select[Range[12000],Length[Union[Flatten[IntegerDigits/@Divisors[#]]]]<3&] (* _Harvey P. Dale_, May 03 2022 *)
%o A206159 (Python)
%o A206159 from sympy import divisors
%o A206159 def ok(n):
%o A206159     digits_used = set()
%o A206159     for d in divisors(n, generator=True):
%o A206159         digits_used |= set(str(d))
%o A206159         if len(digits_used) > 2: return False
%o A206159     return True
%o A206159 print([k for k in range(1, 9000) if ok(k)]) # _Michael S. Branicky_, May 02 2022
%o A206159 (PARI) select( {is_A206159(n)=#Set(concat([digits(d)|d<-divisors(n)]))<3}, [1..10^4]) \\ _M. F. Hasler_, May 02 2022
%Y A206159 Cf. A027750, A031955, A011531, A106101, A004022, A062634.
%Y A206159 Cf. A203897 (an "almost subsequence"), A020449 (primes with only digits 0 & 1), A095048 (number of distinct digits in divisors(n)).
%K A206159 nonn,base
%O A206159 1,2
%A A206159 _Reinhard Zumkeller_, Feb 05 2012
%E A206159 Terms corrected by _Harvey P. Dale_, May 02 2022
%E A206159 Edited by _N. J. A. Sloane_, May 02 2022