This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206226 #50 Jun 11 2015 05:07:16 %S A206226 1,1,3,12,64,377,2432,16475,116263,845105,6292069,47759392,368379006, %T A206226 2879998966,22777018771,181938716422,1465972415692,11902724768574, %U A206226 97299665768397,800212617435074,6617003142869419,54985826573015541,458962108485797208,3846526994743330075 %N A206226 Number of partitions of n^2 into parts not greater than n. %C A206226 Also the number of partitions of n^2 using n or fewer numbers. Thus for n=3 one has: 9; 1,8; 2,7; 3,6; 4,5; 1,1,7; 1,2,6; 1,3,5; 1,4,4; 2,2,5; 2,3,4; 3,3,3. - _J. M. Bergot_, Mar 26 2014 [computations done by _Charles R Greathouse IV_] %C A206226 The partitions in the comments above are the conjugates of the partitions in the definition. By conjugation we have: "partitions into parts <= m" are equinumerous with "partitions into at most m parts". - _Joerg Arndt_, Mar 31 2014 %C A206226 From _Vaclav Kotesovec_, May 25 2015: (Start) %C A206226 In general, "number of partitions of j*n^2 into parts that are at most n" is (for j>0) asymptotic to c(j) * d(j)^n / n^2, where c(j) and d(j) are a constants. %C A206226 ------- %C A206226 j c(j) %C A206226 1 0.1582087202672504149766310999238... %C A206226 2 0.0794245035465730707705885572860... %C A206226 3 0.0530017980244665552354063060738... %C A206226 4 0.0397666338404544208556554596295... %C A206226 5 0.0318193213988281353709268311928... %C A206226 ... %C A206226 17 0.0093617308583114626385718275875... %C A206226 c(j) for big j asymptotically approaches 1 / (2*Pi*j). %C A206226 --------- %C A206226 j d(j) %C A206226 1 9.15337019245412246194853029240... = A258268 %C A206226 2 16.57962120993269533568313969522... %C A206226 3 23.98280768122086592445663786762... %C A206226 4 31.37931997386325137074644287711... %C A206226 5 38.77298550971449870728474612568... %C A206226 ... %C A206226 17 127.45526806942537991146993713837... %C A206226 d(j) for big j asymptotically approaches j * exp(2). %C A206226 (End) %C A206226 d(j) = r^(2*j+1)/(r-1), where r is the root of the equation polylog(2, 1-r) + (j+1/2)*log(r)^2 = 0. - _Vaclav Kotesovec_, Jun 11 2015 %H A206226 Alois P. Heinz and Vaclav Kotesovec, <a href="/A206226/b206226.txt">Table of n, a(n) for n = 0..382</a> (first 150 terms from Alois P. Heinz) %F A206226 a(n) = [x^(n^2)] Product_{k=1..n} 1/(1 - x^k). %F A206226 a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.1582087202672504149766310999238742... . - _Vaclav Kotesovec_, Sep 07 2014 %p A206226 T:= proc(n, k) option remember; %p A206226 `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k))) %p A206226 end: %p A206226 seq(T(n^2, n), n=0..20); # _Vaclav Kotesovec_, May 25 2015 after _Alois P. Heinz_ %t A206226 Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n^2}],{n,0,20}] (* _Vaclav Kotesovec_, May 25 2015 *) %t A206226 (* A program to compute the constants d(j) *) Table[r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2,1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->60], {j, 1, 5}] (* _Vaclav Kotesovec_, Jun 11 2015 *) %o A206226 (PARI) {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2)))),n^2)} %o A206226 for(n=0,25,print1(a(n),", ")) %Y A206226 Cf. A173519, A206227, A206240, A107379, A258268. %Y A206226 Column k=2 of A238016. %Y A206226 Cf. A258296 (j=2), A258293 (j=3), A258294 (j=4), A258295 (j=5). %K A206226 nonn %O A206226 0,3 %A A206226 _Paul D. Hanna_, Feb 05 2012