This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206227 #20 May 25 2015 06:29:02 %S A206227 1,1,4,19,108,674,4494,31275,225132,1662894,12541802,96225037, %T A206227 748935563,5900502806,46976736513,377425326138,3056671009814, %U A206227 24930725879856,204623068332997,1688980598900228,14012122025369431,116784468316023069,977437078888272796,8212186058546599006 %N A206227 Number of partitions of n^2+n into parts not greater than n. %H A206227 Alois P. Heinz and Vaclav Kotesovec, <a href="/A206227/b206227.txt">Table of n, a(n) for n = 0..382</a> (first 150 terms from Alois P. Heinz) %F A206227 a(n) = [x^(n^2+n)] Product_{k=1..n} 1/(1 - x^k). %F A206227 a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.3572966225745094270279188015952797... . - _Vaclav Kotesovec_, Sep 07 2014 %p A206227 T:= proc(n, k) option remember; %p A206227 `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k))) %p A206227 end: %p A206227 seq(T(n^2+n, n), n=0..20); # _Vaclav Kotesovec_, May 25 2015 after _Alois P. Heinz_ %t A206227 Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)}],{n,0,20}] (* _Vaclav Kotesovec_, May 25 2015 *) %o A206227 (PARI) {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2+n)))),n^2+n)} %o A206227 for(n=0,30,print1(a(n),", ")) %Y A206227 Cf. A173519, A206226, A206240, A107379, A258268. %K A206227 nonn %O A206227 0,3 %A A206227 _Paul D. Hanna_, Feb 05 2012