cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A206230 Number of (n+1)X(n+1) 0..3 arrays with every 2X3 or 3X2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.

Original entry on oeis.org

15, 256, 4456, 283728, 10915392, 1448239080, 649065145152, 203396423662488, 222950396746461504, 842104767130879914696, 2305567526828592241306992, 22136848571138455592306188104, 737206270850592131066195723493312
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Diagonal of A206238

Examples

			Some solutions for n=4
..0..1..0..0..1....0..1..0..0..1....0..0..1..2..0....0..1..2..1..0
..2..0..0..1..0....0..0..2..0..0....0..3..2..2..0....1..2..2..1..1
..0..0..1..0..0....1..0..0..3..0....3..2..2..0..1....2..2..0..2..2
..2..2..0..0..1....2..3..0..0..1....2..2..3..1..1....0..0..2..2..3
..3..2..0..2..0....2..2..3..0..0....2..3..1..1..0....3..0..2..3..0
		

A206231 Number of (n+1) X 2 0..3 arrays with every 2 X 3 or 3 X 2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.

Original entry on oeis.org

15, 60, 310, 1640, 8910, 51066, 294546, 1710184, 10051522, 59273370, 350336326, 2076929912, 12328636710, 73241168202, 435453806538, 2590088923960, 15409982499130, 91703551575882, 545793722630878, 3248685323916392
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2012

Keywords

Comments

Column 1 of A206238.

Examples

			Some solutions for n=4:
..0..1....0..0....0..1....0..0....0..0....0..1....0..1....0..0....0..0....0..0
..0..0....0..1....0..0....0..1....1..0....2..1....2..0....1..1....0..1....0..1
..0..1....1..2....0..1....1..0....0..1....3..1....0..0....2..1....1..2....1..2
..1..2....1..1....1..0....0..0....0..0....0..1....3..0....1..0....2..2....1..1
..1..1....0..1....0..0....2..2....0..2....3..3....2..1....0..0....1..1....0..0
		

Crossrefs

Cf. A206238.

Formula

Empirical: a(n) = 8*a(n-1) -11*a(n-2) +36*a(n-3) -303*a(n-4) +232*a(n-5) +147*a(n-6) +756*a(n-7) for n>8.
Empirical g.f.: x*(15 - 60*x - 5*x^2 - 720*x^3 + 1585*x^4 + 1366*x^5 + 2793*x^6 - 378*x^7) / ((1 - 4*x)*(1 - x - x^2 - 3*x^3)*(1 - 3*x - 7*x^2 - 63*x^3)). - Colin Barker, Jun 14 2018

A206232 Number of (n+1)X3 0..3 arrays with every 2X3 or 3X2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.

Original entry on oeis.org

60, 256, 1136, 5728, 31652, 170728, 943584, 5175034, 28475596, 156707492, 861735284, 4742758462, 26087819020, 143545024690, 789722083016, 4344918701514, 23904948840000, 131519096655384, 723594734816028
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Column 2 of A206238

Examples

			Some solutions for n=4
..0..0..0....0..0..0....0..1..1....0..0..0....0..0..0....0..1..0....0..0..0
..1..2..1....1..2..1....2..3..3....1..2..1....1..2..3....0..1..1....1..2..1
..1..3..1....1..3..1....3..3..2....1..3..1....1..0..3....1..2..1....1..0..1
..1..0..1....1..0..1....0..0..3....1..2..1....1..2..3....1..1..2....1..2..1
..1..2..1....2..2..1....1..0..0....3..3..1....0..0..3....3..1..2....3..3..3
		

Formula

Empirical: a(n) = 3*a(n-1) +20*a(n-2) -14*a(n-3) -133*a(n-4) +95*a(n-5) +123*a(n-6) +9*a(n-7) -102*a(n-8) for n>10

A206233 Number of (n+1) X 4 0..3 arrays with every 2 X 3 or 3 X 2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.

Original entry on oeis.org

310, 1136, 4456, 27168, 133392, 607008, 3503136, 17206032, 78302496, 451903008, 2219576592, 10101020448, 58295486496, 286325378832, 1303031636256, 7520117756448, 36935973867792, 168091081075488, 970095190580256
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2012

Keywords

Comments

Column 3 of A206238.

Examples

			Some solutions for n=4:
..0..1..2..0....0..0..1..0....0..0..1..0....0..0..1..1....0..0..1..0
..3..2..2..0....0..1..0..0....2..0..0..2....1..1..0..1....2..0..0..1
..2..2..1..2....1..0..0..1....3..1..0..0....2..1..1..0....3..1..0..0
..2..1..2..2....0..0..2..3....3..3..1..0....1..2..1..1....3..3..1..0
..3..2..2..3....1..1..3..3....1..3..3..1....1..1..0..0....0..3..3..1
		

Crossrefs

Cf. A206238.

Formula

Empirical: a(n) = a(n-1) + 129*a(n-3) - 129*a(n-4) for n>7.
Empirical g.f.: 2*x*(155 + 413*x + 1660*x^2 - 8639*x^3 - 165*x^4 + 22668*x^5 - 16860*x^6) / ((1 - x)*(1 - 129*x^3)). - Colin Barker, Jun 14 2018

A206234 Number of (n+1) X 5 0..3 arrays with every 2 X 3 or 3 X 2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.

Original entry on oeis.org

1640, 5728, 27168, 283728, 1236432, 9042600, 95322432, 419146392, 3065437344, 32314300392, 142090622832, 1039183255560, 10954547828832, 48168721135992, 352283123630784, 3713591713969992, 16329196465097232, 119423978910831720
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2012

Keywords

Comments

Column 4 of A206238.

Examples

			Some solutions for n=4:
..0..0..1..1..2....0..0..1..2..0....0..0..1..1..2....0..1..0..0..2
..1..1..2..1..1....0..3..2..2..0....1..1..2..1..1....2..0..0..3..0
..2..1..1..2..1....3..2..2..0..1....3..1..1..2..1....0..0..1..0..0
..3..0..1..1..2....2..2..3..1..1....1..2..1..1..2....3..3..0..0..3
..3..3..2..1..2....2..3..1..1..0....1..1..2..1..1....1..3..0..1..2
		

Crossrefs

Cf. A206238.

Formula

Empirical: a(n) = a(n-1) + 339*a(n-3) - 339*a(n-4) for n>8.
Empirical g.f.: 8*x*(205 + 511*x + 2680*x^2 - 37425*x^3 - 54141*x^4 + 67251*x^5 - 86751*x^6 + 107163*x^7) / ((1 - x)*(1 - 339*x^3)). - Colin Barker, Jun 14 2018

A206235 Number of (n+1)X6 0..3 arrays with every 2X3 or 3X2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.

Original entry on oeis.org

8910, 31652, 133392, 1236432, 10915392, 118573968, 1122086640, 10022726928, 109206613488, 1033441784400, 9230931489648, 100579291011408, 951799883421360, 8501687901954768, 92633527021495728, 876607692631061520
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Column 5 of A206238

Examples

			Some solutions for n=4
..0..1..1..2..3..2....0..0..1..0..0..2....0..1..1..0..1..0....0..0..1..0..0..1
..1..1..2..3..3..2....0..1..0..0..1..0....1..1..2..1..1..0....0..1..0..0..2..3
..1..2..3..3..0..3....1..0..0..1..0..0....1..0..1..1..3..2....3..0..0..1..3..3
..0..3..3..0..3..3....0..0..2..0..0..2....2..1..1..0..2..2....0..0..2..3..3..1
..3..3..2..3..3..2....0..3..0..0..1..3....1..1..3..2..2..3....1..1..3..3..0..2
		

Formula

Empirical: a(n) = a(n-1) +921*a(n-3) -921*a(n-4) for n>9

A206236 Number of (n+1)X7 0..3 arrays with every 2X3 or 3X2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.

Original entry on oeis.org

51066, 170728, 607008, 9042600, 118573968, 1448239080, 22535636736, 303011941944, 3712941210144, 57939122017416, 779043702707184, 9545971851249384, 148961482706745696, 2002921359660139224
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Column 6 of A206238

Examples

			Some solutions for n=4
..0..0..1..0..0..1..0....0..0..1..0..0..1..0....0..0..1..0..0..1..2
..0..2..0..0..2..0..0....1..0..0..1..0..0..1....0..1..0..0..3..2..2
..1..0..0..2..0..0..2....2..3..0..0..1..0..0....2..0..0..3..2..2..1
..0..0..1..0..0..3..1....2..2..1..0..0..1..1....0..0..1..2..2..3..0
..3..3..0..0..2..1..1....3..2..2..3..0..1..2....3..3..2..2..3..0..0
		

Formula

Empirical: a(n) = a(n-1) +2571*a(n-3) -2571*a(n-4) for n>10

A206237 Number of (n+1) X 8 0..3 arrays with every 2 X 3 or 3 X 2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.

Original entry on oeis.org

294546, 943584, 3503136, 95322432, 1122086640, 22535636736, 649065145152, 8026428934128, 163621204516992, 4735717646406528, 58825697658136176, 1199179807904946432, 34708074630513355776, 431133538136479945968
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2012

Keywords

Comments

Column 7 of A206238.

Examples

			Some solutions for n=4:
..0..0..1..2..2..3..0..3....0..0..1..1..0..1..1..2....0..0..1..0..0..1..2..0
..0..1..2..2..1..0..0..3....2..2..3..1..1..2..1..1....0..3..0..0..1..2..2..0
..3..2..2..3..0..0..1..2....3..2..2..3..1..1..2..1....1..0..0..3..2..2..0..1
..2..2..3..0..0..1..2..2....0..1..2..2..0..1..1..2....0..0..3..2..2..3..1..1
..1..1..0..0..3..2..2..1....0..0..3..2..2..3..1..1....1..1..2..2..3..1..1..3
		

Formula

Empirical: a(n) = a(n-1) +7329*a(n-3) -7329*a(n-4) for n>11.
Showing 1-8 of 8 results.