cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A206247 Number of (n+1)X(n+1) 0..3 arrays with every 2X2 subblock having zero permanent.

Original entry on oeis.org

49, 8029, 1364224, 4556324929, 14139111560401, 848170637644693504, 48673249000646115009649, 50198078741005740094898080285, 52964434709981480280861081128206336
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Diagonal of A206255

Examples

			Some solutions for n=4
..3..3..0..1..0....1..2..3..2..2....3..3..2..1..3....0..0..3..1..3
..0..0..0..1..0....0..0..0..0..0....0..0..0..0..0....3..0..0..0..0
..3..2..0..3..0....2..1..3..2..1....1..0..2..0..1....2..0..3..0..1
..0..0..0..1..0....0..0..0..0..0....1..0..1..0..2....3..0..0..0..3
..2..3..0..1..0....1..0..3..3..3....2..0..1..0..3....3..0..3..0..0
		

A206248 Number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having zero permanent.

Original entry on oeis.org

49, 361, 1600, 9409, 47089, 258064, 1343281, 7198489, 37945600, 201895681, 1068570721, 5672499856, 30061664689, 159465247561, 845443470400, 4483691905729, 23774527583569, 126075439502224, 668536407557041
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2012

Keywords

Comments

Column 1 of A206255.

Examples

			Some solutions for n=4:
..1..0....2..1....2..1....2..3....2..3....3..3....3..3....0..3....0..3....0..1
..0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..2....0..2....0..0
..0..3....1..0....2..1....2..3....0..0....1..1....3..1....0..3....0..0....0..1
..0..1....2..0....0..0....0..0....0..0....0..0....0..0....0..2....3..3....0..2
..0..3....1..0....3..0....1..3....3..0....1..1....0..1....0..1....0..0....0..2
		

Crossrefs

Cf. A206255.

Formula

Empirical: a(n) = 4*a(n-1) +12*a(n-2) -27*a(n-3).
a(n) = A006139(n+2)^2.
Conjectures from Colin Barker, Jun 14 2018: (Start)
G.f.: x*(49 + 165*x - 432*x^2) / ((1 + 3*x)*(1 - 7*x + 9*x^2)).
a(n) = 2^(-n)*((-1)^n*2^(1+n)*3^(3+n) + (77-20*sqrt(13))*(7-sqrt(13))^n + (7+sqrt(13))^n*(77+20*sqrt(13))) / 13.
(End)

A206249 Number of (n+1) X 3 0..3 arrays with every 2 X 2 subblock having zero permanent.

Original entry on oeis.org

361, 8029, 99856, 1718209, 26512201, 434613664, 6990799321, 113636628469, 1841188465216, 29885540089249, 484822312979761, 7867521981505504, 127659187514359081, 2071519703855856109, 33613908262858076176
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2012

Keywords

Comments

Column 2 of A206255.

Examples

			Some solutions for n=4:
..0..2..3....0..2..0....0..0..3....3..0..1....1..2..2....0..3..3....2..3..0
..0..0..0....0..0..0....1..0..1....0..0..1....0..0..0....0..0..0....0..0..0
..1..1..1....1..3..2....0..0..3....0..0..1....1..1..1....1..0..0....3..3..3
..0..0..0....0..0..0....2..0..3....1..0..0....0..0..0....1..0..3....0..0..0
..3..1..3....1..0..1....2..0..1....3..0..1....0..0..2....2..0..1....1..1..0
		

Crossrefs

Cf. A206255.

Formula

Empirical: a(n) = 19*a(n-1) - 855*a(n-3) + 2025*a(n-4).
Empirical g.f.: x*(361 + 1170*x - 52695*x^2 + 129600*x^3) / ((1 - 19*x + 45*x^2)*(1 - 45*x^2)). - Colin Barker, Jun 14 2018

A206250 Number of (n+1) X 4 0..3 arrays with every 2 X 2 subblock having zero permanent.

Original entry on oeis.org

1600, 99856, 1364224, 49336576, 944701696, 27285753856, 603269103616, 15860529270784, 372641945092096, 9417680785309696, 227009527113908224, 5642600260896292864, 137487696199369621504, 3393605721164360974336
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2012

Keywords

Comments

Column 3 of A206255.

Examples

			Some solutions for n=4:
..1..0..0..1....2..0..3..3....2..1..2..0....0..0..1..1....1..0..0..0
..0..0..0..1....0..0..0..0....0..0..0..0....3..0..0..0....0..0..1..2
..1..0..0..0....2..1..1..0....2..0..1..3....3..0..1..1....1..0..0..0
..1..0..0..3....0..0..0..0....2..0..0..0....1..0..0..0....1..0..3..0
..2..0..0..1....2..1..1..0....0..0..0..1....3..0..0..2....1..0..0..0
		

Crossrefs

Cf. A206255.

Formula

Empirical: a(n) = 28*a(n-1) +192*a(n-2) -8352*a(n-3) +25920*a(n-4) +373248*a(n-5) -1679616*a(n-6).
Empirical g.f.: 16*x*(100 + 3441*x - 108684*x^2 + 333072*x^3 + 5866992*x^4 - 26873856*x^5) / ((1 - 40*x + 432*x^2 - 1296*x^3)*(1 + 12*x - 144*x^2 - 1296*x^3)). - Colin Barker, Jun 14 2018

A206251 Number of (n+1)X5 0..3 arrays with every 2X2 subblock having zero permanent.

Original entry on oeis.org

9409, 1718209, 49336576, 4556324929, 226637884225, 16533087493120, 1006239668280961, 68438717405988481, 4427204221759169536, 295306870252087238017, 19431114832514090805121, 1289257317404589497597440
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Column 4 of A206255

Examples

			Some solutions for n=4
..3..3..2..3..0....3..1..1..2..0....0..1..0..2..3....2..1..3..3..1
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..3..0..0..0..3....1..2..1..1..3....0..0..3..2..3....0..1..0..2..2
..2..0..2..0..3....0..0..0..0..0....1..0..0..0..0....0..1..0..0..0
..3..0..3..0..0....2..1..1..2..1....0..0..0..1..1....0..1..0..1..3
		

Formula

Empirical: a(n) = 88*a(n-1) -128439*a(n-3) +1879848*a(n-4) +28773144*a(n-5) -593002863*a(n-6) +32230833768*a(n-8) -98419153113*a(n-9)

A206252 Number of (n+1)X6 0..3 arrays with every 2X2 subblock having zero permanent.

Original entry on oeis.org

47089, 26512201, 944701696, 226637884225, 14139111560401, 2261195747329024, 186370092021300625, 24455901146017548025, 2314068144009520254976, 275508832683852646545601, 27911391658467202945715041
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Column 5 of A206255

Examples

			Some solutions for n=4
..1..2..2..0..3..2....3..2..3..1..1..2....2..2..2..2..3..2....1..3..3..1..2..0
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..2..3..0..1....3..0..1..1..2..0....1..3..2..3..1..0....2..2..0..1..3..2
..1..0..0..0..0..1....2..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..1..0..0..2....3..0..0..1..2..3....2..3..0..3..3..0....1..3..3..3..2..3
		

Formula

Empirical: a(n) = 133*a(n-1) +6888*a(n-2) -1340811*a(n-3) +4226391*a(n-4) +4180767372*a(n-5) -80490770091*a(n-6) -5217648903441*a(n-7) +148692944523528*a(n-8) +2437871310147447*a(n-9) -99376895146018923*a(n-10) -199651087166898780*a(n-11) +26256479575727404800*a(n-12) -103833901082736072000*a(n-13) -2123373038352913440000*a(n-14) +13177032454057536000000*a(n-15)

A206253 Number of (n+1)X7 0..3 arrays with every 2X2 subblock having zero permanent.

Original entry on oeis.org

258064, 434613664, 27285753856, 16533087493120, 2261195747329024, 848170637644693504, 173223627538782109696, 53060397281015908925440, 12918833834289527406198784, 3660962109260466462309744640
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Column 6 of A206255

Examples

			Some solutions for n=4
..3..1..0..0..1..3..0....1..1..3..2..3..2..0....3..0..0..1..0..2..0
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....1..0..0..1..0..1..0
..2..3..1..0..3..2..0....3..2..3..0..1..0..2....2..0..0..3..0..0..0
..0..0..0..0..0..0..0....0..0..0..0..2..0..0....3..0..0..2..0..1..2
..1..0..3..1..0..1..2....1..1..1..0..1..0..2....0..0..0..2..0..0..0
		

Formula

Empirical: a(n) = 436*a(n-1) -20670912*a(n-3) +1768362192*a(n-4) +301989632832*a(n-5) -40539456253440*a(n-6) -1536342178669056*a(n-7) +377148789279765504*a(n-8) -1615023812548104192*a(n-9) -1758635101880092164096*a(n-10) +45109122367823348465664*a(n-11) +4303432979017649071128576*a(n-12) -181303558019449768187265024*a(n-13) -5085618071625131560739536896*a(n-14) +338719378543908534036612513792*a(n-15) +1447054855782983096105476030464*a(n-16) -323240313366898115796464692101120*a(n-17) +2430629740180983250878668715589632*a(n-18) +151402677346160235585093709301022720*a(n-19) -2307461851889299859661071648393527296*a(n-20) -28010992393774322798242500381933305856*a(n-21) +696331835357100763665844862341317918720*a(n-22) -69186082604013077340806446462997605908480*a(n-24) +353941433111056374606651926115966699700224*a(n-25)

A206254 Number of (n+1)X8 0..3 arrays with every 2X2 subblock having zero permanent.

Original entry on oeis.org

1343281, 6990799321, 603269103616, 1006239668280961, 186370092021300625, 173223627538782109696, 48673249000646115009649, 33073672641937525219176361, 11681343800269067725781401600
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Column 7 of A206255

Examples

			Some solutions for n=4
..1..0..0..2..3..0..1..1....2..2..3..1..3..3..0..0....3..1..3..1..3..3..3..1
..1..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0
..3..0..2..2..1..1..2..1....3..3..1..2..0..3..0..1....1..2..3..0..1..2..0..0
..0..0..0..0..0..0..0..0....0..0..0..0..0..2..0..0....0..0..0..0..0..0..0..2
..3..2..2..2..3..1..2..0....0..3..0..3..0..2..0..3....0..2..0..1..0..3..0..2
		

Formula

Empirical: a(n) = 760*a(n-1) +128388*a(n-2) -213382620*a(n-3) +16145776764*a(n-4) +22629583010268*a(n-5) -3838103572007826*a(n-6) -1210315733012118204*a(n-7) +300718177544003494572*a(n-8) +34602416054049234499380*a(n-9) -12994232799115556406238428*a(n-10) -424461018655040288964274332*a(n-11) +354738088375016440542715465857*a(n-12) -4468102499760252335669263322700*a(n-13) -6503279595087148111920138775297704*a(n-14) +277510620511494531092021166490945608*a(n-15) +82474473929335317230775863351392167768*a(n-16) -5498152145270648546778141658473380210280*a(n-17) -730250556612024541625665464361980553987644*a(n-18) +66038827852503719715205962805391055657831528*a(n-19) +4454491535522432110676326644177520535672544216*a(n-20) -540108571898317929022757321728674058151654948856*a(n-21) -17638208163687534281555446585669375079024593370040*a(n-22) +3137561439154039104522506690131458161394475752281160*a(n-23) +35177741666224179894440470136683380207557950404881265*a(n-24) -13167077208904047000367865266944534320529756493094436000*a(n-25) +43688889198602094578451687709368723846189065605963706100*a(n-26) +40059681408274406058034945112761538656935934971228508218900*a(n-27) -559303998260830692987736964847796546788703062392908431172500*a(n-28) -87771432361178289178636901099484386130605650745628635269864500*a(n-29) +1970952230186641634810668603114964552917890758676216330487800750*a(n-30) +136077400810169689982526569739166662423371010718064025496825012500*a(n-31) -4095902546984185377950722262594545453140105402446965117499282482500*a(n-32) -144310246460892961724788287171396935379985513568288457266808382717500*a(n-33) +5542901101468143355388555017417245989331094924883170007175870876412500*a(n-34) +97863154430359391429714370578878589638058204950929985039872979925812500*a(n-35) -4948606276747342422592839157088698145520612955481243300239160619474140625*a(n-36) -35626692188290247005328357918844203986310354588928055050257115648589687500*a(n-37) +2846147567503871277417727284205987598885268367591282809508000271004309750000*a(n-38) +1558504496045032163427441148226905337799471898023015748036005485495274000000*a(n-39) -994139983023571208552171600344573741307284156355708460656826831169915800000000*a(n-40) +3790457841254650180660547098562506369032591860002027197728771672226933600000000*a(n-41) +186441087666122050344500007570415430891032704492688753507221117662492164800000000*a(n-42) -1238842193344667836517765745100794188644120350672317241137923372915102560000000000*a(n-43) -13707763404230765904256670929061150807489951650788484448276534272953628800000000000*a(n-44) +112820113558796538181052142390479967845703559143834940276767811044190218240000000000*a(n-45)
Showing 1-8 of 8 results.