A206268 Number of compositions of n with at most one 1.
1, 1, 1, 3, 4, 8, 13, 23, 39, 67, 114, 194, 329, 557, 941, 1587, 2672, 4492, 7541, 12643, 21171, 35411, 59166, 98758, 164689, 274393, 456793, 759843, 1263004, 2097872, 3482269, 5776559, 9576639, 15867427, 26276106, 43489802, 71944217, 118958597, 196605701
Offset: 0
Keywords
Examples
We have a(3) = 3 since 3 = 1 + 2 = 2+1. A(2) = 1 since 2 is the only composition of 2 that does not have more than one 1.
Links
- Jair Taylor, Table of n, a(n) for n = 0..499
- Ricardo Gómez Aíza, Symbolic dynamical scales: modes, orbitals, and transversals, arXiv:2009.02669 [math.DS], 2020.
Programs
-
Mathematica
CoefficientList[Series[(2 x^3 - 2 x^2 - x + 1)/(x^4 + 2 x^3 - x^2 - 2 x + 1), {x, 0, 38}], x] (* Michael De Vlieger, Dec 09 2020 *)
-
Sage
R.
= PowerSeriesRing(QQ) f = (2*x^3 - 2*x^2 - x + 1)/(x^4 + 2*x^3 - x^2 - 2*x + 1) print(f.list())
Formula
G.f.: (2*x^3 - 2*x^2 - x + 1)/(x^4 + 2*x^3 - x^2 - 2*x + 1).