This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206292 #30 Jul 14 2021 10:03:07 %S A206292 1,2,3,4,6,12,18,30,42,48,60,66,70,78,90,102,120,126,150,180,210,240, %T A206292 270,300,330,420,450,462,480,510,540,630,660,690,780,840,870,924,1050, %U A206292 1092,1140,1260,1320,1470,1560,1680,1890,2310,2730,2940,3150,3570,3990 %N A206292 Numbers k such that cyclotomic polynomial Phi(k,-m) < Phi(j,-m) for any j > k and m >= 2. %H A206292 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cyclotomic_polynomial">Cyclotomic polynomial</a> %e A206292 For k such that A000010(k) = 1: %e A206292 Phi(1, -m) = -1 - m, %e A206292 Phi(2, -m) = 1 - m, %e A206292 Phi(1, -m) < Phi(2, -m), %e A206292 so a(1) = 1, a(2) = 2. %e A206292 For k > 2 such that A000010(k) = 2: %e A206292 Phi(3, -m) = 1 - m + m^2, %e A206292 Phi(4, -m) = 1 + m^2, %e A206292 Phi(6, -m) = 1 + m + m^2. %e A206292 When integer m > 1, Phi(3, -m) < Phi(4, -m) < Phi(6, -m), so a(3) = 3, a(4) = 4, and a(5) = 6. %e A206292 For k > 6 such that A000010(k) = 4: %e A206292 Phi(8, -m) = 1 + m^4, %e A206292 Phi(10, -m) = 1 + m + m^2 + m^3 + m^4, %e A206292 Phi(12, -m) = 1 - m^2 + m^4. %e A206292 When integer m > 1, Phi(12, -m) < Phi(8, -m) < Phi(10, -m), so a(6) = 12. %t A206292 t = Select[Range[4000], EulerPhi[#] <= 1000 &]; t = SortBy[t, Cyclotomic[#, -2] &]; DeleteDuplicates[Table[Max[Take[t, n]], {n, 1, Length[t]}]] %Y A206292 Cf. A194712, A206225, A000010, A002202, A032447. %K A206292 nonn %O A206292 1,2 %A A206292 _Lei Zhou_, Feb 13 2012