This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206293 #6 Mar 30 2012 18:37:35 %S A206293 1,1,2,5,18,78,415,2467,16212,114623,863229,6858780,57156213, %T A206293 497147291,4497291265,42189445764,409478828567,4103901097024, %U A206293 42403116824997,451059832858894,4933844398096693,55436157047213427,639215949145395559,7557505365363885063 %N A206293 G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=1..n} Series_Reversion( x/A(x^k) ). %F A206293 G.f.: A(x) = Sum_{n>=0} Product_{k=1..n} G_k(x), where G_n(x) is defined by: %F A206293 (1) G_n(x) = Series_Reversion( x/A(x^n) ), %F A206293 (2) G_n(x) = x * A( G_n(x)^n ). %e A206293 G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 18*x^4 + 78*x^5 + 415*x^6 + 2467*x^7 +... %e A206293 such that, by definition, %e A206293 A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +... %e A206293 where G_n(x) satisfies: G_n( x/A(x^n) ) = x. %e A206293 The first few expansions of G_n(x) begin: %e A206293 G_1(x) = x + x^2 + 3*x^3 + 12*x^4 + 59*x^5 + 329*x^6 + 2035*x^7 +... %e A206293 G_2(x) = x + x^3 + 4*x^5 + 22*x^7 + 144*x^9 + 1045*x^11 + 8159*x^13 +... %e A206293 G_3(x) = x + x^4 + 5*x^7 + 35*x^10 + 289*x^13 + 2626*x^16 +... %e A206293 G_4(x) = x + x^5 + 6*x^9 + 51*x^13 + 510*x^17 + 5597*x^21 +... %e A206293 G_5(x) = x + x^6 + 7*x^11 + 70*x^16 + 823*x^21 + 10608*x^26 +... %e A206293 G_6(x) = x + x^7 + 8*x^13 + 92*x^19 + 1244*x^25 + 18434*x^31 +... %e A206293 G_7(x) = x + x^8 + 9*x^15 + 117*x^22 + 1789*x^29 + 29975*x^36 +... %e A206293 where G_n(x) = x*A( G_n(x)^n ). %o A206293 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,prod(k=1,m,serreverse(x/subst(A,x,x^k +x*O(x^n))))));polcoeff(A,n)} %o A206293 for(n=0,45,print1(a(n),", ")) %Y A206293 Cf. A206290. %K A206293 nonn %O A206293 0,3 %A A206293 _Paul D. Hanna_, Feb 05 2012