This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206296 #54 Jul 06 2025 02:57:17 %S A206296 1,2,3,10,63,2750,842751,85558343750,2098355820117528699, %T A206296 769999781728184386440152910156250, %U A206296 2359414683424785920146467280333749864720543920418139851 %N A206296 Prime factorization representation of Fibonacci polynomials: a(0) = 1, a(1) = 2, and for n > 1, a(n) = A003961(a(n-1)) * a(n-2). %C A206296 These are numbers matched to the Fibonacci polynomials according to the scheme explained in A206284 (see also A104244). In this case, the exponent of the k-th prime p_k in the prime factorization of a(n) indicates the coefficient of term x^(k-1) in the n-th Fibonacci polynomial. See the examples. %H A206296 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciPolynomial.html">Fibonacci polynomial</a> %H A206296 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fibonacci_polynomials">Fibonacci polynomials</a> %F A206296 From _Antti Karttunen_, Jul 29 2015: (Start) %F A206296 a(0) = 1, a(1) = 2, and for n >= 2, a(n) = A003961(a(n-1)) * a(n-2). %F A206296 Other identities. For all n >= 0: %F A206296 A001222(a(n)) = A000045(n). [When each polynomial is evaluated at x=1.] %F A206296 A048675(a(n)) = A000129(n). [at x=2.] %F A206296 A090880(a(n)) = A006190(n). [at x=3.] %F A206296 (End) %e A206296 n a(n) prime factorization Fibonacci polynomial %e A206296 ------------------------------------------------------------ %e A206296 0 1 (empty) F_0(x) = 0 %e A206296 1 2 p_1 F_1(x) = 1 %e A206296 2 3 p_2 F_2(x) = x %e A206296 3 10 p_3 * p_1 F_3(x) = x^2 + 1 %e A206296 4 63 p_4 * p_2^2 F_4(x) = x^3 + 2x %e A206296 5 2750 p_5 * p_3^3 * p_1 F_5(x) = x^4 + 3x^2 + 1 %e A206296 6 842751 p_6 * p_4^4 * p_2^3 F_6(x) = x^5 + 4x^3 + 3x %t A206296 c[n_] := CoefficientList[Fibonacci[n, x], x] %t A206296 f[n_] := Product[Prime[k]^c[n][[k]], {k, 1, Length[c[n]]}] %t A206296 Table[f[n], {n, 1, 11}] (* A206296 *) %o A206296 (Scheme, with memoization-macro definec) %o A206296 (definec (A206296 n) (cond ((<= n 1) (+ 1 n)) (else (* (A003961 (A206296 (- n 1))) (A206296 (- n 2)))))) %o A206296 (Python) %o A206296 from functools import reduce %o A206296 from sympy import factorint, prime, primepi %o A206296 from operator import mul %o A206296 def a003961(n): %o A206296 F=factorint(n) %o A206296 return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F]) %o A206296 l=[1, 2] %o A206296 for n in range(2, 11): %o A206296 l.append(a003961(l[n - 1])*l[n - 2]) %o A206296 print(l) # _Indranil Ghosh_, Jun 21 2017 %Y A206296 Cf. A000045, A000129, A001222, A003961, A006190, A049310, A048675, A090880, A104244, A206284. %Y A206296 Other such mappings: %Y A206296 polynomial sequence integer sequence %Y A206296 ----------------------------------------- %Y A206296 x^n A000040 %Y A206296 (x+1)^n A007188 %Y A206296 n*x^(n-1) A062457 %Y A206296 (1-x^n)/(1-x) A002110 %Y A206296 n + (n-1)x + ... +x^n A006939 %Y A206296 Stern polynomials A260443 %K A206296 nonn %O A206296 0,2 %A A206296 _Clark Kimberling_, Feb 05 2012 %E A206296 a(0) = 1 prepended (to indicate 0-polynomial), Name changed, Comments and Example section rewritten by _Antti Karttunen_, Jul 29 2015