This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206297 #28 Aug 04 2024 20:07:12 %S A206297 1,3,5,9,13,21,25,37,45,57,65,85,93,117,129,145,161,193,205,241,257, %T A206297 281,301,345,361,401,425,461,485,541,557,617,649,689,721,769,793,865, %U A206297 901,949,981,1061,1085,1169,1209,1257,1301,1393,1425,1509,1549 %N A206297 Position of n in the canonical bijection from the positive integers to the positive rational numbers. %C A206297 The canonical bijection from the positive integers to the positive rational numbers is given by A038568(n)/A038569(n). %C A206297 Appears to be a variant of A049691. - _R. J. Mathar_, Feb 11 2012 %C A206297 It appears that a(n) = 2*A005728(n) - 1. - _Chris Boyd_, Mar 21 2015 %H A206297 G. C. Greubel, <a href="/A206297/b206297.txt">Table of n, a(n) for n = 1..1000</a> %e A206297 The canonical bijection starts with 1/1, 1/2, 2/1, 1/3, 3/1, 2/3, 3/2, 1/4, 4/1, 3/4, 4/3, 1/5, 5/1, so that this sequence starts with 1,3,5,9,13 and A206350 starts with 1,2,4,8,12. %t A206297 a[n_] := Module[{s = 1, k = 2, j = 1}, %t A206297 While[s <= n, s = s + 2*EulerPhi[k]; k = k + 1]; %t A206297 s = s - 2*EulerPhi[k - 1]; %t A206297 While[s <= n, If[GCD[j, k - 1] = %t A206297 = 1, s = s + 2]; j = j + 1]; %t A206297 If[s > n + 1, j - 1, k - 1]]; %t A206297 t = Table[a[n], {n, 0, 3000}]; (* A038568 *) %t A206297 ReplacePart[1 + Flatten[Position[t, 1]], 1, 1] %t A206297 (* A206297 *) %o A206297 (Python) %o A206297 from functools import lru_cache %o A206297 @lru_cache(maxsize=None) %o A206297 def A206297(n): %o A206297 if n == 1: %o A206297 return 1 %o A206297 c, j = 1, 2 %o A206297 k1 = (n-1)//j %o A206297 while k1 > 1: %o A206297 j2 = (n-1)//k1 + 1 %o A206297 c += (j2-j)*(A206297(k1+1)-2) %o A206297 j, k1 = j2, (n-1)//j2 %o A206297 return (n-2)*(n-1)-c+j+2 # _Chai Wah Wu_, Aug 04 2024 %Y A206297 Cf. A038568, A038569, A206350. %Y A206297 A049691 is an essentially identical sequence. See also A018805. %K A206297 nonn %O A206297 1,2 %A A206297 _Clark Kimberling_, Feb 06 2012