This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206306 #24 Dec 21 2022 20:20:00 %S A206306 1,0,1,0,3,1,0,7,6,1,0,15,23,9,1,0,31,72,48,12,1,0,63,201,198,82,15,1, %T A206306 0,127,522,699,420,125,18,1,0,255,1291,2223,1795,765,177,21,1,0,511, %U A206306 3084,6562,6768,3840,1260,238,24,1 %N A206306 Riordan array (1, x/(1-3*x+2*x^2)). %C A206306 The convolution triangle of the Mersenne numbers A000225. - _Peter Luschny_, Oct 09 2022 %H A206306 G. C. Greubel, <a href="/A206306/b206306.txt">Rows n = 0..50 of the triangle, flattened</a> %F A206306 Triangle T(n,k), read by rows, given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. %F A206306 Diagonals sums are even-indexed Fibonacci numbers. %F A206306 Sum_{k=0..n} T(n,k)*x^k = A000007(n), A204089(n), A204091(n) for x = 0, 1, 2 respectively. %F A206306 G.f.: (1-3*x+2*x^)/(1-(3+y)*x+2*x^2). %F A206306 From _Philippe Deléham_, Nov 17 2013; corrected Feb 13 2020: (Start) %F A206306 T(n, n) = 1. %F A206306 T(n+1, n) = 3n = A008585(n). %F A206306 T(n+2, n) = A062725(n). %F A206306 T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=T(2,0)=0, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. (End) %F A206306 From _G. C. Greubel_, Dec 20 2022: (Start) %F A206306 Sum_{k=0..n} (-1)^k*T(n,k) = [n=1] - A009545(n). %F A206306 Sum_{k=0..n} (-2)^k*T(n,k) = [n=1] + A078020(n+1). %F A206306 T(2*n, n+1) = A045741(n+2), n >= 0. %F A206306 T(2*n+1, n+1) = A244038(n). (End) %e A206306 Triangle begins: %e A206306 1; %e A206306 0, 1; %e A206306 0, 3, 1; %e A206306 0, 7, 6, 1; %e A206306 0, 15, 23, 9, 1; %e A206306 0, 31, 72, 48, 12, 1; %e A206306 0, 63, 201, 198, 82, 15, 1; %e A206306 0, 127, 522, 699, 420, 125, 18, 1; %e A206306 0, 255, 1291, 2223, 1795, 765, 177, 21, 1; %e A206306 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1; %e A206306 0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1; %p A206306 # Uses function PMatrix from A357368. %p A206306 PMatrix(10, n -> 2^n - 1); # _Peter Luschny_, Oct 09 2022 %t A206306 T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]]; %t A206306 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 20 2022 *) %o A206306 (Magma) %o A206306 function T(n,k) // T = A206306 %o A206306 if k lt 0 or k gt n then return 0; %o A206306 elif k eq n then return 1; %o A206306 elif k eq 0 then return 0; %o A206306 else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k); %o A206306 end if; return T; %o A206306 end function; %o A206306 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Dec 20 2022 %o A206306 (SageMath) %o A206306 def T(n,k): # T = A206306 %o A206306 if (k<0 or k>n): return 0 %o A206306 elif (k==n): return 1 %o A206306 elif (k==0): return 0 %o A206306 else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k) %o A206306 flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Dec 20 2022 %Y A206306 Columns: A000007, A000225 (Mersenne numbers), A045618, A055582. %Y A206306 Cf. A008585, A009545, A084938, A062725, A110441, A204089, A204091. %Y A206306 Cf. A045741, A078020, A244038. %K A206306 easy,nonn,tabl %O A206306 0,5 %A A206306 _Philippe Deléham_, Feb 06 2012