This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206330 #7 Jul 12 2012 00:40:00 %S A206330 3,4,5,6,9,10,17,18,19,20,21,22,29,30,33,34,37,38,39,40,41,42,43,44, %T A206330 45,46,47,48,53,54,55,56,57,58,59,60,69,70,73,74,77,78,81,82,83,84,87, %U A206330 88,97,98,101,102,105,106,109,110,113,114,117,118,119,120,123 %N A206330 Numbers that match polynomials irreducible over the integers. %C A206330 Each n>1 matches a polynomial having integer coefficients %C A206330 determined by the prime factorization of n. Let c be a %C A206330 positive integer, and write %C A206330 c=p(1)^e(1) * p(2)^e(2) * ... * p(k)^e(k), and %C A206330 define p(n,x) = e(1) + e(2)x + e(3)x^2 + ... + e(k)x^k. %C A206330 If c/d is a rational number with GCD(c,d)=1, define %C A206330 Q(c/d,x)=p(c,x)-p(d,x). Let c(n)/d(n) be the n-th %C A206330 positive rational number given by the canonical %C A206330 bijection; i.e., c(n)=A038568(n)/A038569(n). %C A206330 Define P(0,x)=1 and P(n,x)=Q(c(n)/d(n),x). Polynomials %C A206330 having nonnegative integer coefficients are matched to %C A206330 the nonnegative integers as follows: %C A206330 ... %C A206330 n .... P[n,x] .. irreducible %C A206330 0 .... 0 ....... no %C A206330 1 ... -1 ....... no %C A206330 2 .... 1 ....... no %C A206330 3 ... -x ....... yes %C A206330 4 .... x ....... yes %C A206330 5 ... 1-x ...... yes %C A206330 6 .. -1+x ...... yes %C A206330 7 .. -2 ........ no %C A206330 8 ... 2 ........ no %C A206330 9 .. -2+x ...... yes %C A206330 10 .. 2-x ...... yes %e A206330 In the table under Comments, read "yes" for n=3,4,5,6,9,10. %t A206330 b[n_] := Table[x^k, {k, 0, n}]; %t A206330 f[n_] := f[n] = FactorInteger[n]; z = 1000; %t A206330 t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]] %t A206330 == Prime[k], f[n][[m, 2]], 0]; %t A206330 u = Table[Apply[Plus, %t A206330 Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1, %t A206330 Length[f[n]]}]], {n, 1, z}]; %t A206330 c[n_] := Module[{s = 1, k = 2, j = 1}, %t A206330 While[s <= n, s = s + 2*EulerPhi[k]; k = k + 1]; %t A206330 s = s - 2*EulerPhi[k - 1]; %t A206330 While[s <= n, If[GCD[j, k - 1] %t A206330 == 1, s = s + 2]; j = j + 1]; %t A206330 If[s > n + 1, j - 1, k - 1]]; %t A206330 d[n_] := Module[{s = 1, k = 2, j = 1}, %t A206330 While[s <= n, s = s + 2*EulerPhi[k]; k = k + 1]; %t A206330 s = s - 2*EulerPhi[k - 1]; %t A206330 While[s <= n, If[GCD[j, k - 1] %t A206330 == 1, s = s + 2]; j = j + 1]; %t A206330 If[s > n + 1, k - 1, j - 1]]; %t A206330 P[n_, x_] := %t A206330 u[[c[n]]].b[-1 + Length[u[[c[n]]]]] - %t A206330 u[[d[n]]].b[-1 + Length[u[[d[n]]]]] %t A206330 TableForm[Table[{n, P[n, x], Factor[P[n, x]]}, %t A206330 {n, 1, z/4}]]; %t A206330 v = {}; Do[n++; %t A206330 If[IrreduciblePolynomialQ[P[n, x]], AppendTo[v, n]], {n, z/2}] %t A206330 v (* A206330 *) %t A206330 Complement[Range[0,200], v] (* A206331 *) %Y A206330 Cf. A206284 (polynomials over the positive integers), %Y A206330 A206331 (complement of A206330). %K A206330 nonn %O A206330 1,1 %A A206330 _Clark Kimberling_, Feb 06 2012