cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A206384 Number of n X 3 0..6 arrays with no element equal to another within a city block distance of two, and new values 0..6 introduced in row major order.

Original entry on oeis.org

1, 4, 55, 1368, 34442, 868994, 21916090, 552801398, 13943026782, 351682327314, 8870382111250, 223735362633678, 5643217340398022, 142337380859578634, 3590138049351706810, 90553101869397071558, 2283996915742293943662
Offset: 1

Views

Author

R. H. Hardin, Feb 07 2012

Keywords

Comments

Column 3 of A206389.

Examples

			Some solutions for n=4:
..0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2
..3..4..0....2..3..4....2..3..4....2..3..4....2..3..4....2..3..0....3..4..5
..1..2..5....4..5..6....4..5..6....4..5..0....1..0..5....1..4..5....5..2..1
..6..0..1....3..0..1....3..1..0....3..1..6....4..2..1....6..0..1....1..6..4
		

Crossrefs

Cf. A206389.

Formula

Empirical: a(n) = 21*a(n-1) + 131*a(n-2) - 637*a(n-3) + 486*a(n-4) for n>6.
Empirical g.f.: x*(1 - 17*x - 160*x^2 + 326*x^3 + 571*x^4 - 405*x^5) / ((1 - x)*(1 - 20*x - 151*x^2 + 486*x^3)). - Colin Barker, Jun 15 2018

A206385 Number of n X 4 0..6 arrays with no element equal to another within a city block distance of two, and new values 0..6 introduced in row major order.

Original entry on oeis.org

2, 33, 1368, 67716, 3328979, 164270604, 8094257014, 399073153303, 19671060879306, 969710249315342, 47801400299066037, 2356379708874988482, 116157573684573753928, 5725991875022057193833, 282262740672653624738188, 13914145046466342831542252, 685897849965998299017561091
Offset: 1

Views

Author

R. H. Hardin, Feb 07 2012

Keywords

Examples

			Some solutions for n=4:
..0..1..2..0....0..1..2..3....0..1..2..3....0..1..2..3....0..1..2..0
..2..3..4..5....3..4..5..6....2..3..4..5....2..3..4..5....2..3..4..5
..1..5..6..3....6..2..0..1....1..5..6..0....4..5..0..6....5..6..0..1
..0..2..1..4....0..1..3..2....3..4..1..2....6..1..3..4....4..1..5..6
		

Crossrefs

Column 4 of A206389.

A206386 Number of n X 5 0..6 arrays with no element equal to another within a city block distance of two, and new values 0..6 introduced in row major order.

Original entry on oeis.org

5, 380, 34442, 3328979, 319902496, 30809397399, 2965468376203, 285477006510014, 27481270649615774
Offset: 1

Views

Author

R. H. Hardin, Feb 07 2012

Keywords

Comments

Column 5 of A206389.

Examples

			Some solutions for n=4
..0..1..2..3..0....0..1..2..0..1....0..1..2..0..1....0..1..2..0..1
..2..3..0..1..2....2..3..4..5..2....2..3..4..5..6....2..3..4..5..6
..1..4..5..6..3....1..0..6..3..4....6..0..1..2..0....4..5..0..1..2
..6..0..1..4..5....3..2..5..0..6....1..2..3..6..1....0..1..6..3..4
		

Crossrefs

Cf. A206389.

A206387 Number of nX6 0..6 arrays with no element equal to another within a city block distance of two, and new values 0..6 introduced in row major order.

Original entry on oeis.org

15, 4801, 868994, 164270604, 30809397399
Offset: 1

Views

Author

R. H. Hardin Feb 07 2012

Keywords

Comments

Column 6 of A206389

Examples

			Some solutions for n=4
..0..1..2..0..3..1....0..1..2..0..1..2....0..1..2..3..4..1....0..1..2..3..0..1
..4..3..5..6..2..0....2..3..4..5..6..3....2..3..4..0..5..6....2..3..0..1..2..3
..2..6..4..1..5..3....6..5..0..3..2..4....5..6..1..2..3..0....1..4..5..6..4..5
..3..5..0..2..4..6....3..1..6..4..5..6....3..0..5..6..1..2....3..6..1..0..3..6
		

A206388 Number of nX7 0..6 arrays with no element equal to another within a city block distance of two, and new values 0..6 introduced in row major order.

Original entry on oeis.org

52, 62004, 21916090, 8094257014, 2965468376203
Offset: 1

Views

Author

R. H. Hardin Feb 07 2012

Keywords

Comments

Column 7 of A206389

Examples

			Some solutions for n=4
..0..1..2..0..1..2..3....0..1..2..3..0..2..1....0..1..2..0..1..2..0
..4..3..5..6..3..4..5....4..3..5..4..6..5..0....3..4..5..3..6..4..1
..1..6..4..1..0..6..1....1..2..6..0..1..3..6....1..2..6..4..2..3..5
..2..0..3..5..2..3..4....3..4..1..5..2..0..4....4..3..0..5..1..6..4
		
Showing 1-5 of 5 results.