cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206417 (5*F(n)+3*L(n)-8)/2.

This page as a plain text file.
%I A206417 #22 Jun 13 2015 00:54:10
%S A206417 0,3,7,14,25,43,72,119,195,318,517,839,1360,2203,3567,5774,9345,15123,
%T A206417 24472,39599,64075,103678,167757,271439,439200,710643,1149847,1860494,
%U A206417 3010345,4870843,7881192,12752039,20633235,33385278,54018517,87403799,141422320
%N A206417 (5*F(n)+3*L(n)-8)/2.
%D A206417 Thomas Koshy, Fibonacci and Lucas Numbers and Applications. Wiley, New York, (2001)
%H A206417 Vincenzo Librandi, <a href="/A206417/b206417.txt">Table of n, a(n) for n = 1..1000</a>
%H A206417 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1).
%F A206417 a(n) = 2*a(n-1)-a(n-3). G.f.: x^2*(x+3) / ((x-1)*(x^2+x-1)). - _Colin Barker_, Oct 28 2014
%t A206417 Table[(5*Fibonacci[n] + 3*LucasL[n] - 8)/2, {n, 60}] (* or *) Table[LucasL[n+2] - 4, {n, 60}]
%o A206417 (PARI) a(n)=fibonacci(n)+3*fibonacci(n+1)-4 \\ _Charles R Greathouse IV_, Feb 08 2012
%o A206417 (PARI) concat(0, Vec(x^2*(x+3)/((x-1)*(x^2+x-1)) + O(x^100))) \\ _Colin Barker_, Oct 28 2014
%Y A206417 Cf. A000032, A000045.
%K A206417 nonn,easy
%O A206417 1,2
%A A206417 _Vladimir Joseph Stephan Orlovsky_, Feb 07 2012
%E A206417 Name shortened, _Joerg Arndt_, Oct 28 2014