A206428 Rectangular array, a(m,n) = 2^(m-1)*(3^n-1), read by antidiagonals.
0, 1, 0, 4, 2, 0, 13, 8, 4, 0, 40, 26, 16, 8, 0, 121, 80, 52, 32, 16, 0, 364, 242, 160, 104, 64, 32, 0, 1093, 728, 484, 320, 208, 128, 64, 0, 3280, 2186, 1456, 968, 640, 416, 256, 128, 0, 9841, 6560, 4372, 2912, 1936, 1280, 832, 512, 256, 0
Offset: 0
Examples
Initial 5 X 5 block of array (upper left corner is (0,0), row index m, column index n): 0 1 4 13 40 0 2 8 26 80 0 4 16 52 160 0 8 32 104 320 0 16 64 208 640 Pascal's Triangle (mod 3), row numbers in ternary: 1 <= Row 0, m=0, n=0, 2^(-1)(3^0-1) = #2's = 0 1 1 <= Row 1, m=1, n=0, 2^0(3^0-1) = #2's = 0 1 2 1 <= Row 2, m=0, n=1, 2^(-1)(3^1-1) = #2's = 1 1 0 0 1 <= Row 10, m=1, n=0, 2^0(3^0-1) = #2's = 0 1 1 0 1 1 <= Row 11, m=2, n=0, 2^1(3^0-1) = #2's = 0 1 2 1 1 2 1 <= Row 12, m=1, n=1, 2^0(3^1-1) = #2's = 2 1 0 0 2 0 0 1 <= Row 20, m=0, n=1, 2^(-1)(3^1-1) = #2's = 1 1 1 0 2 2 0 1 1 <= Row 21, m=1, n=1, 2^0(3^1-1) = #2's = 2 1 2 1 2 1 2 1 2 1 <= Row 22, m=0, n=2, 2^(-1)(3^2-1) = #2's = 4 1 0 0 0 0 0 0 0 0 1 <= Row 100, m=1, n=0, 2^0(3^0-1) = #2's = 0
Links
- Marcus Jaiclin, et al. Pascal's Triangle, Mod 2,3,5
Comments