cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206429 Triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes such that the root node has degree k. n>=2, 1<=k<=n-1.

This page as a plain text file.
%I A206429 #23 Jan 22 2020 21:01:32
%S A206429 2,6,3,36,24,4,320,240,60,5,3750,3000,900,120,6,54432,45360,15120,
%T A206429 2520,210,7,941192,806736,288120,54880,5880,336,8,18874368,16515072,
%U A206429 6193152,1290240,161280,12096,504,9,430467210,382637520,148803480,33067440,4592700,408240,22680,720
%N A206429 Triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes such that the root node has degree k. n>=2, 1<=k<=n-1.
%H A206429 Andrew Howroyd, <a href="/A206429/b206429.txt">Table of n, a(n) for n = 2..1276</a> (first 50 rows)
%H A206429 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 179.
%F A206429 E.g.f.: x*exp(y * T(x)) where T(x) is the e.g.f. for A000169.
%e A206429 Triangle begins:
%e A206429       2;
%e A206429       6     3;
%e A206429      36    24     4;
%e A206429     320   240    60    5;
%e A206429    3750  3000   900  120    6;
%e A206429   54432 45360 15120 2520  210  7;
%t A206429 nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Drop[Transpose[Table[Range[0,nn]!CoefficientList[Series[x t^k/k!,{x,0,nn}],x],{k,1,8}]],2]]//Flatten
%o A206429 (PARI) T(n)={my(f=serreverse(x*exp(-x + O(x^n)))); [Vecrev(p/y) | p<-Vec(serlaplace(x*exp(y*f) - x))]}
%o A206429 { my(A=T(7)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Jan 22 2020
%Y A206429 Column 1 is A055541.
%Y A206429 Row sums are A000169.
%K A206429 nonn,tabl
%O A206429 2,1
%A A206429 _Geoffrey Critzer_, Feb 07 2012