cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206433 Total number of odd parts in the last section of the set of partitions of n.

This page as a plain text file.
%I A206433 #31 Apr 30 2023 22:19:58
%S A206433 1,1,3,3,7,9,15,19,32,40,60,78,111,143,200,252,343,437,576,728,952,
%T A206433 1190,1531,1911,2426,3008,3788,4664,5819,7143,8830,10780,13255,16095,
%U A206433 19661,23787,28881,34795,42051,50445,60675,72547,86859,103481,123442,146548
%N A206433 Total number of odd parts in the last section of the set of partitions of n.
%C A206433 From _Omar E. Pol_, Apr 07 2023: (Start)
%C A206433 Convolution of A002865 and A001227.
%C A206433 a(n) is also the total number of odd divisors of the terms in the n-th row of the triangle A336811.
%C A206433 a(n) is also the number of odd terms in the n-th row of the triangle A207378.
%C A206433 a(n) is also the number of odd terms in the n-th row of the triangle A336812. (End)
%H A206433 Alois P. Heinz, <a href="/A206433/b206433.txt">Table of n, a(n) for n = 1..1000</a>
%p A206433 b:= proc(n, i) option remember; local f, g;
%p A206433       if n=0 or i=1 then [1, n]
%p A206433     else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
%p A206433          [f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]]
%p A206433       fi
%p A206433     end:
%p A206433 a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
%p A206433 seq(a(n), n=1..50);  # _Alois P. Heinz_, Mar 22 2012
%t A206433 b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]]+g[[1]], f[[2]]+g[[2]] + Mod[i, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Feb 16 2017, after _Alois P. Heinz_ *)
%Y A206433 Partial sums give A066897.
%Y A206433 Cf. A001227, A002865, A006128, A135010, A138121, A138137, A182703, A206434, A206435, A206436, A207378, A336811, A336812.
%K A206433 nonn
%O A206433 1,3
%A A206433 _Omar E. Pol_, Feb 12 2012
%E A206433 More terms from _Alois P. Heinz_, Mar 22 2012