cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206434 Total number of even parts in the last section of the set of partitions of n.

This page as a plain text file.
%I A206434 #31 Apr 30 2023 22:20:19
%S A206434 0,1,0,3,1,6,4,13,10,24,23,46,46,81,88,143,159,242,278,404,470,657,
%T A206434 776,1057,1251,1663,1984,2587,3089,3967,4742,6012,7184,9001,10753,
%U A206434 13351,15917,19594,23335,28514,33883,41140,48787,58894,69691,83680,98809,118101
%N A206434 Total number of even parts in the last section of the set of partitions of n.
%C A206434 From _Omar E. Pol_, Apr 07 2023: (Start)
%C A206434 Convolution of A002865 and A183063.
%C A206434 a(n) is also the total number of even divisors of the terms in the n-th row of the triangle A336811.
%C A206434 a(n) is also the number of even terms in the n-th row of the triangle A207378.
%C A206434 a(n) is also the number of even terms in the n-th row of the triangle A336812. (End)
%H A206434 Alois P. Heinz, <a href="/A206434/b206434.txt">Table of n, a(n) for n = 1..1000</a>
%F A206434 G.f.: (Sum_{i>0} (x^(2*i)-x^(2*i+1))/(1-x^(2*i)))/Product_{i>0} (1-x^i). - _Alois P. Heinz_, Mar 23 2012
%p A206434 b:= proc(n, i) option remember; local f, g;
%p A206434       if n=0 or i=1 then [1, 0]
%p A206434     else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
%p A206434          [f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]]
%p A206434       fi
%p A206434     end:
%p A206434 a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
%p A206434 seq (a(n), n=1..50);  # _Alois P. Heinz_, Mar 22 2012
%t A206434 b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + Mod[i+1, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[ a[n], {n, 1, 50}] (* _Jean-François Alcover_, Feb 16 2017, after _Alois P. Heinz_ *)
%Y A206434 Partial sums give A066898.
%Y A206434 Cf. A002865, A006128, A135010, A138121, A138137, A182703, A183063, A206433, A206435, A206436, A207378, A336811, A336812.
%K A206434 nonn
%O A206434 1,4
%A A206434 _Omar E. Pol_, Feb 12 2012
%E A206434 More terms from _Alois P. Heinz_, Mar 22 2012