cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206435 Total sum of odd parts in the last section of the set of partitions of n.

This page as a plain text file.
%I A206435 #31 Apr 30 2023 18:55:25
%S A206435 1,1,5,3,13,13,29,29,66,70,126,146,241,287,450,526,791,963,1360,1660,
%T A206435 2312,2810,3799,4649,6158,7528,9824,11962,15393,18773,23804,28932,
%U A206435 36413,44093,54953,66419,82085,98929,121469,145865,177983,213241,258585,308861
%N A206435 Total sum of odd parts in the last section of the set of partitions of n.
%C A206435 From _Omar E. Pol_, Apr 09 2023: (Start)
%C A206435 Convolution of A002865 and A000593.
%C A206435 a(n) is also the total sum of odd divisors of the terms in the n-th row of the triangle A336811.
%C A206435 a(n) is also the sum of odd terms in the n-th row of the triangle A207378.
%C A206435 a(n) is also the sum of odd terms in the n-th row of the triangle A336812. (End)
%H A206435 Vaclav Kotesovec, <a href="/A206435/b206435.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz)
%F A206435 G.f.: (Sum_{i>=0} (2*i+1)*x^(2*i)*(1-x)/(1-x^(2*i+1))) / Product_{j>0} (1-x^j). - _Alois P. Heinz_, Mar 16 2012
%F A206435 a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (24*sqrt(2*n)). - _Vaclav Kotesovec_, May 29 2018
%p A206435 b:= proc(n, i) option remember; local g, h;
%p A206435       if n=0 then [1, 0]
%p A206435     elif i<1 then [0, 0]
%p A206435     else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
%p A206435          [g[1]+h[1], g[2]+h[2] +(i mod 2)*h[1]*i]
%p A206435       fi
%p A206435     end:
%p A206435 a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
%p A206435 seq(a(n), n=1..60);  # _Alois P. Heinz_, Mar 16 2012
%t A206435 b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i > n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Feb 16 2017, after _Alois P. Heinz_ *)
%Y A206435 Partial sums give A066967.
%Y A206435 Cf. A000593, A002865, A135010, A138121, A138879, A206433, A206434, A206436, A207378, A336811, A336812.
%K A206435 nonn
%O A206435 1,3
%A A206435 _Omar E. Pol_, Feb 12 2012
%E A206435 More terms from _Alois P. Heinz_, Mar 16 2012